首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human lysosomal alpha-glucosidase. Characterization of the catalytic site.   总被引:5,自引:0,他引:5  
The substrate analogue conduritol B epoxide (CBE) is demonstrated to be an active site-directed inhibitor of human lysosomal alpha-glucosidase. A competitive mode of inhibition is obtained with glycogen as natural and 4-methylumbelliferyl-alpha-D-glucopyranoside as artificial substrate. The inactivation of the enzyme is time and concentration dependent and results in the covalent binding of CBE. Catalytic activity is required for binding to occur. CBE-labeled peptides containing the catalytic residue of lysosomal alpha-glucosidase were isolated and identified by microsequencing and amino acid analysis. The peptides appeared to originate from a protein domain which is highly conserved among alpha-amylases, maltase, glucoamylases, and transglucanosylases. Based on the sequence similarity and the mechanism of CBE binding, Asp-518 is predicted to be the essential carboxylate in the active site of lysosomal alpha-glucosidase. The functional importance of Asp-518 and other residues around the catalytic site was studied by expression of in vitro mutagenized alpha-glucosidase cDNA in transiently transfected COS cells. Substitution of Asp-513 by Glu-513 is shown to interfere with the posttranslational modification and the intracellular transport of the alpha-glucosidase precursor. The residues Trp-516 and Asp-518 are demonstrated to be critical for catalytic function.  相似文献   

2.
Bioactive peptides frequently terminate with an essential alpha-amide that is generated from a COOH-terminal Gly in a two-step enzymatic process occurring within the lumen of the secretory pathway. The first enzyme, peptidylglycine alpha-hydroxylating monooxygenase, is a member of the copper- and ascorbate-dependent monooxygenase family. The second enzyme, peptidyl-alpha-hydroxyglycine alpha-amidating lyase (PAL, EC 4.3.2.5), has no known homologues. Examination of the catalytic core of PAL (PALcc) using trypsin, BNPS skatole, and COOH-terminally truncated proteins failed to identify stable subdomains. Treatment of PALcc with divalent metal ion chelators inactivated the enzyme and increased its protease and thermal sensitivity, suggesting a structural role for bound metal. Purified PALcc contained 0.7 +/- 0.4 mol of zinc/mol of enzyme. Since the four Cys residues in PALcc form two disulfide bonds, potential Zn ligands include conserved Asp, Glu, and His residues. The secretion and activity of PALcc bearing mutations in each conserved Asp, Glu, and His residue were evaluated. Mutation of three conserved Asp residues and two conserved His residues yielded a protein that could not be secreted, suggesting that these residues play a structural role. Analysis of mutants that were efficiently secreted identified three His residues along with single Asp residue that may play a role in catalysis. These essential residues occur in a pattern unique to PAL.  相似文献   

3.
J A Buechler  S S Taylor 《Biochemistry》1989,28(5):2065-2070
In the absence of MgATP, the catalytic subunit of cAMP-dependent protein kinase is irreversibly inhibited by the hydrophobic carbodiimide dicyclohexylcarbodiimide, and this inhibition is most likely due to the formation of a cross-link between a carboxyl group and a lysine residue in the active site (Toner-Webb & Taylor, 1987). In order to identify these cross-linked residues, the catalytic subunit was modified by dicyclohexylcarbodiimide and then treated with acetic anhydride and digested with trypsin. The resulting peptides were resolved by high-performance liquid chromatography. One major absorbing tryptic peptide and one smaller peptide consistently and reproducibly showed a decrease in absorbance after the catalytic subunit had been treated with DCCD. These peptides correspond to residues 166-190 and 57-93, respectively. A unique peptide was isolated from the modified catalytic subunit, and the sequence of this peptide established that the cross-linking occurred between Asp-184 and Lys-72. The cross-linking of these two residues, which were both identified previously as essential residues, confirms the likelihood that each plays a role in the functioning of this enzyme. The fact that Asp-184 and Lys-72 appear to be invariant in all protein kinases further supports the hypothesis that these two residues, located close to one another at the active site of the enzyme, play essential roles in catalysis.  相似文献   

4.
Aspartate-162 in the catalytic chain of aspartate transcarbamoylase is conserved in all of the sequences determined to date. The X-ray structure of the Escherichia coli enzyme indicates that this residue is located in a loop region (160's loop) that is near the interface between two catalytic trimers and is also close to the active site. In order to test whether this conserved residue is important for support of the internal architecture of the enzyme and/or involved in transmitting homotropic and heterotropic effects, the function of this residue was studied using a mutant version of the enzyme with an alanine at this position (Asp-162----Ala) created by site-specific mutagenesis. The Asp-162----Ala enzyme exhibits a 400-fold reduction in the maximal observed specific activity, approximately 2-fold and 10-fold decreases in the aspartate and carbamoyl phosphate concentrations at half the maximal observed specific activity respectively, a loss of homotropic cooperativity, and loss of response to the regulatory nucleotides ATP and CTP. Furthermore, equilibrium binding studies indicate that the affinity of the mutant enzyme for CTP is reduced more than 10-fold. The isolated catalytic subunit exhibits a 660-fold reduction in maximal observed specific activity compared to the wild-type catalytic subunit. The Km values for aspartate and carbamoyl phosphate for the Asp-162----Ala catalytic subunit were within 2-fold of the values observed for the wild-type catalytic subunit. Computer simulations of the energy-minimized mutant enzyme indicate that the space once occupied by the side chain of Asp-162 may be filled by other side chains, suggesting that Asp-162 is important for stabilizing the internal architecture of the wild-type enzyme.  相似文献   

5.
The active tetrameric glucose dehydrogenase from Bacillus megaterium is rapidly inactivated upon reaction with tetranitromethane. The inactivation is correlated with the nitration of a single tyrosine residue/subunit. The nitration does not influence the dissociation-reassociation process of the enzyme. The inactivation is prevented by the presence of NAD, AMP, ATP. The sequence around the nitrated tyrosine residue was determined and the residue was identified as Tyr-254 in the covalent structure of the enzyme. After dissociation of the enzyme into its monomers two tyrosine residues become susceptible to nitration. The nitrated subunits are unable to reassociate to the tetramer. Isolation and sequence analysis of the peptides containing nitrotyrosine indicated that two different tyrosine residues are predominantly modified. One residue is Tyr-254 which is essential for the catalytic activity and the other one is Tyr-160 which seems to be located in the subunit binding area.  相似文献   

6.
The role of conserved Asp-199 in chloramphenicol acetyltransferase (CAT) has been investigated by site-directed mutagenesis. Substitution of Asp-199 by alanine results in a thermolabile mutant enzyme (Ala-199 CAT) with reduced kcat(13-fold) but similar Km values to wild type CAT. Replacement by asparagine gives rise to a thermostable mutant enzyme (Asn-199 CAT) with much reduced kcat(1500-fold). Furthermore, Asn-199 CAT shows anomalous inactivation kinetics with the affinity reagent 3-(bromo-acetyl)chloramphenicol. These results favor a structural role for Asp-199 rather than a catalytic one, in keeping with crystallographic evidence for involvement of Asp-199 in a tight salt bridge with Arg-18. Replacement of Arg-18 by valine results in a mutant enzyme (Val-18 CAT) with similar properties to Ala-199 CAT. The catalytic imidazole of His-19 appears to be conformationally constrained by hydrogen bonding between N1-H and the carbonyl oxygen of the same residue and by ring stacking with Tyr-25.  相似文献   

7.
Carnitine palmitoyltransferase (CPT) I catalyzes the conversion of long-chain fatty acyl-CoAs to acyl carnitines in the presence of l-carnitine, a rate-limiting step in the transport of long-chain fatty acids from the cytoplasm to the mitochondrial matrix. To determine the role of the 15 cysteine residues in the heart/skeletal muscle isoform of CPTI (M-CPTI) on catalytic activity and malonyl-CoA sensitivity, we constructed a 6-residue N-terminal, a 9-residue C-terminal, and a 15-residue cysteineless M-CPTI by cysteine-scanning mutagenesis. Both the 9-residue C-terminal mutant enzyme and the complete 15-residue cysteineless mutant enzyme are inactive but that the 6-residue N-terminal cysteineless mutant enzyme had activity and malonyl-CoA sensitivity similar to those of wild-type M-CPTI. Mutation of each of the 9 C-terminal cysteines to alanine or serine identified a single residue, Cys-305, to be important for catalysis. Substitution of Cys-305 with Ala in the wild-type enzyme inactivated M-CPTI, and a single change of Ala-305 to Cys in the 9-residue C-terminal cysteineless mutant resulted in an 8-residue C-terminal cysteineless mutant enzyme that had activity and malonyl-CoA sensitivity similar to those of the wild type, suggesting that Cys-305 is the residue involved in catalysis. Sequence alignments of CPTI with the acyltransferase family of enzymes in the GenBank led to the identification of a putative catalytic triad in CPTI consisting of residues Cys-305, Asp-454, and His-473. Based on the mutagenesis and substrate labeling studies, we propose a mechanism for the acyltransferase activity of CPTI that uses a catalytic triad composed of Cys-305, His-473, and Asp-454 with Cys-305 serving as a probable nucleophile, thus acting as a site for covalent attachment of the acyl molecule and formation of a stable acyl-enzyme intermediate. This would in turn allow carnitine to act as a second nucleophile and complete the acyl transfer reaction.  相似文献   

8.
All known pseudouridine synthases have a conserved aspartic acid residue that is essential for catalysis, Asp-48 in Escherichia coli TruB. To probe the role of this residue, inactive D48C TruB was oxidized to generate the sulfinic acid cognate of aspartic acid. The oxidation restored significant but reduced catalytic activity, consistent with the proposed roles of Asp-48 as a nucleophile and general base. The family of pseudouridine synthases including TruB also has a nearly invariant histidine residue, His-43 in the E. coli enzyme. To examine the role of this conserved residue, site-directed mutagenesis was used to generate H43Q, H43N, H43A, H43G, and H43F TruB. Except for phenylalanine, the substitutions seriously impaired the enzyme, but all of the altered TruB retained significant activity. To examine the roles of Asp-48 and His-43 more fully, the pH dependences of wild-type, oxidized D48C, and H43A TruB were determined. The wild-type enzyme displays a typical bell-shaped profile. With oxidized D48C TruB, logk(cat) varies linearly with pH, suggesting the participation of specific rather than general base catalysis. Substitution of His-43 perturbs the pH profile, but it remains bell-shaped. The ascending limb of the pH profile is assigned to Asp-48, and the descending limb is tentatively ascribed to an active site tyrosine residue, the bound substrate uridine, or the bound product pseudouridine.  相似文献   

9.
10.
The human UDP-glucuronosyltransferase UGT1A6 is the primary phenol-metabolizing UDP-glucuronosyltransferase isoform. It catalyzes the nucleophilic attack of phenolic xenobiotics on UDP-glucuronic acid, leading to the formation of water-soluble glucuronides. The catalytic mechanism proposed for this reaction is an acid-base mechanism that involves an aspartic/glutamic acid and/or histidine residue. Here, we investigated the role of 14 highly conserved aspartic/glutamic acid residues over the entire sequence of human UGT1A6 by site-directed mutagenesis. We showed that except for aspartic residues Asp-150 and Asp-488, the substitution of carboxylic residues by alanine led to active mutants but with decreased enzyme activity and lower affinity for acceptor and/or donor substrate. Further analysis including mutation of the corresponding residue in other UGT1A isoforms suggests that Asp-150 plays a major catalytic role. In this report we also identified a single active site residue important for glucuronidation of phenols and carboxylic acid substrates by UGT1A enzyme family. Replacing Pro-40 of UGT1A4 by histidine expanded the glucuronidation activity of the enzyme to phenolic and carboxylic compounds, therefore, leading to UGT1A3-type isoform in terms of substrate specificity. Conversely, when His-40 residue of UGT1A3 was replaced with proline, the substrate specificity shifted toward that of UGT1A4 with loss of glucuronidation of phenolic substrates. Furthermore, mutation of His-39 residue of UGT1A1 (His-40 in UGT1A4) to proline led to loss of glucuronidation of phenols but not of estrogens. This study provides a step forward to better understand the glucuronidation mechanism and substrate recognition, which is invaluable for a better prediction of drug metabolism and toxicity in human.  相似文献   

11.
Phosphoserine phosphatase belongs to a new class of phosphotransferases forming an acylphosphate during catalysis and sharing three motifs with P-type ATPases and haloacid dehalogenases. The phosphorylated residue was identified as the first aspartate in the first motif (DXDXT) by mass spectrometry analysis of peptides derived from the phosphorylated enzyme treated with NaBH(4) or alkaline [(18)O]H(2)O. Incubation of native phosphoserine phosphatase with phosphoserine in [(18)O]H(2)O did not result in (18)O incorporation in residue Asp-20, indicating that the phosphoaspartate is hydrolyzed, as in P-type ATPases, by attack of the phosphorus atom. Mutagenesis studies bearing on conserved residues indicated that four conservative changes either did not affect (S109T) or caused a moderate decrease in activity (G178A, D179E, and D183E). Other mutations inactivated the enzyme by >80% (S109A and G180A) or even by >/=99% (D179N, D183N, K158A, and K158R). Mutations G178A and D179N decreased the affinity for phosphoserine, suggesting that these residues participate in the binding of the substrate. Mutations of Asp-179 decreased the affinity for Mg(2+), indicating that this residue interacts with the cation. Thus, investigated residues appear to play an important role in the reaction mechanism of phosphoserine phosphatase, as is known for equivalent residues in P-type ATPases and haloacid dehalogenases.  相似文献   

12.
The role of Thr-113 of Escherichia coli dihydrofolate reductase in binding and catalysis was probed by amino acid substitution. Thr-113, a strictly conserved residue that forms a hydrogen bond to the active-site Asp-27 and to the amino group of methotrexate through a fixed water molecule, was replaced by valine. The kinetic scheme is identical in form with the wild-type scheme, although many of the rate constants vary, including a decrease in the association rate constants and an increase in the dissociation rate constants for folate ligands, a decrease in the hydride-transfer rate constant in both directions, and an increase in the intrinsic pKa of Asp-27. Overall, replacement of Thr-113 by Val decreases the binding of folate substrates by approximately 2.3 kcal/mol. These multiple complex changes on various ground and transition states underscore the optimal properties of a strictly conserved residue in the evolution of catalytic function.  相似文献   

13.
The moderate thermophilic bacterium Bacillus stearothermophilus P1 expresses a thermostable lipase that was active and stable at the high temperature. Based on secondary structure predictions and secondary structure-driven multiple sequence alignment with the homologous lipases of known three-dimensional (3-D) structure, we constructed the 3-D structure model of this enzyme and the model reveals the topological organization of the fold, corroborating our predictions. We hypothesized for this enzyme the alpha/beta-hydrolase fold typical of several lipases and identified Ser-113, Asp-317, and His-358 as the putative members of the catalytic triad that are located close to each other at hydrogen bond distances. In addition, the strongly inhibited enzyme by 10 mM PMSF and 1-hexadecanesulfonyl chloride was indicated that it contains a serine residue which plays a key role in the catalytic mechanism. It was also confirmed by site-directed mutagenesis that mutated Ser-113, Asp-317, and His-358 to Ala and the activity of the mutant enzyme was drastically reduced.  相似文献   

14.
The pH rate profile for the hydrolysis of diethyl-p-nitrophenyl phosphate catalyzed by the phosphotriesterase from Pseudomonas diminuta shows a requirement for the deprotonation of an ionizable group for full catalytic activity. This functional group has an apparent pKa of 6.1 +/- 0.1 at 25 degrees C, delta Hion of 7.9 kcal/mol, and delta Sion of -1.4 cal/K.mol. The enzyme is not inactivated in the presence of the chemical modification reagents dithiobis-(2-nitrobenzoate), methyl methane thiosulfonate, carbodiimide, pyridoxal, butanedione, or iodoacetic acid and thus cysteine, asparate, glutamate, lysine, and arginine do not appear to be critical for catalytic activity. However, the phosphotriesterase is inactivated completely with methylene blue, Rose Bengal, or diethyl pyrocarbonate. The enzyme is not inactivated by diethyl pyrocarbonate in the presence of bound substrate analogs, and inactivation with diethyl pyrocarbonate is reversible upon addition of neutralized hydroxylamine. The modification of a single histidine residue by diethyl pyrocarbonate, as shown by spectrophotometric analysis, is responsible for the loss of catalytic activity. The pKinact for diethyl pyrocarbonate modification is 6.1 +/- 0.1 at 25 degrees C. These results have been interpreted to suggest that a histidine residue at the active site of phosphotriesterase is facilitating the reaction by general base catalysis.  相似文献   

15.
N-Methylpurine-DNA glycosylase (MPG) initiates base excision repair in DNA by removing a variety of alkylated purine adducts. Although Asp was identified as the active site residue in various DNA glycosylases based on the crystal structure, Glu-125 in human MPG (Glu-145 in mouse MPG) was recently proposed to be the catalytic residue. Mutational analysis for all Asp residues in a truncated, fully active MPG protein showed that only Asp-152 (Asp-132 in the human protein), which is located near the active site, is essential for catalytic activity. However, the substrate binding was not affected in the inactive Glu-152, Asn-152, and Ala-152 mutants. Furthermore, mutation of Asp-152 did not significantly affect the intrinsic tryptophan fluorescence of the enzyme and the far UV CD spectra, although a small change in the near UV CD spectra of the mutants suggests localized conformational change in the aromatic residues. We propose that in addition to Glu-145 in mouse MPG, which functions as the activator of a water molecule for nucleophilic attack, Asp-152 plays an essential role either by donating a proton to the substrate base and, thus, facilitating its release or by stabilizing the steric configuration of the active site pocket.  相似文献   

16.
Reaction ofKlebsiella aerogenes urease with diethylpyrocarbonate (DEP) led to a pseudo-first-order loss of enzyme activity by a reaction that exhibited saturation kinetics. The rate of urease inactivation by DEP decreased in the presence of active site ligands (urea, phosphate, and boric acid), consistent with the essential reactive residue being located proximal to the catalytic center. ThepH dependence for the rate of inactivation indicated that the reactive residue possessed apK a of 6.5, identical to that of a group that must be deprotonated for catalysis. Full activity was restored when the inactivated enzyme was treated with hydroxylamine, compatible with histidinyl or tyrosinyl reactivity. Spectrophotometric studies were consistent with DEP derivatization of 12 mol of histidine/mol of native enzyme. In the presence of active site ligands, however, approximately 4 mol of histidine/mol of protein were protected from reaction. Each protein molecule is known to possess two catalytic units; hence, we propose that urease possesses at least one essential histidine per catalytic unit.  相似文献   

17.
Saccharomyces cerevisiae phospho enol pyruvate carboxykinase (EC 4.1.1.49), inactivated by N-(iodoacetyl)-N'-(5-sulfo-1-naphthyl)ethylenediamine, incorporated 0.95 mol of the fluorescent moiety per mol of enzyme subunit. Reagent incorporation was completely protected by the presence of ADP plus MnCl2. The labeled protein was digested with trypsin after carboxymethylation. Two labeled peptides were isolated by reverse-phase high-performance liquid chromatography and were sequenced by gas-phase automatic Edman degradation. Both peptides contained overlapping amino acid sequences from Asn-358 to Lys-375, thus identifying Cys-364 as the reactive amino acid residue. The position of the target amino acid residue is immediately preceding a putative phosphoryl-binding sequence proposed for some nucleotide-binding proteins.  相似文献   

18.
The inactivation of the bovine heart mitochondrial F1-ATPase with 1-(ethoxycarbonyl)-2-ethoxy-1,2-dihydroquinoline (EEDQ) in the presence of [3H]aniline at pH 7.0 led to the covalent incorporation of 3H into the enzyme. When the ATPase was inactivated by 94% with 0.9 mM EEDQ in the presence of 3.6 mM [3H]aniline in a large-scale experiment in which the protein concentration was 21 mg/ml, 4.2 mol [3H]anilide were formed per mol enzyme, of which 0.35 mol was incorporated per mol of the alpha subunit and 1.0 mol was incorporated per mol of the beta subunit. Examination of a tryptic digest of the isolated alpha subunit revealed that the majority of the 3H was contained in a single tryptic peptide, which, when purified, was shown to contain the [3H]anilide of a glutamic acid residue which corresponds to alpha-Glu-402 of the Escherichia coli F1-ATPase. This residue was labeled to the extent of about 1.0 mol/mol enzyme. Analysis of tryptic peptides purified from the isolated beta subunit showed that 0.8 and 1.5 mol, respectively, of the [3H]anilides of beta-Glu-341 and beta-Glu-199 were formed per mol MF1 during the inactivation of the enzyme at 21 mg/ml. When the ATPase was inactivated by 90% at a protein concentration of 1.7 mg/ml by 0.9 mM EEDQ in the presence of 1.7 mM [3H]aniline, 3.1 mol [3H]anilide were formed per mol enzyme. From the analysis of the radioactive peptides purified from a tryptic digest of the labeled ATPase from this experiment it was estimated that 0.7 mol of the [3H]anilide of alpha-Glu-402, 0.3 mol of the [3H]anilide of beta-Glu-341, and 1.5 mol of the [3H]anilide of beta-Glu-199 were formed per mol F1-ATPase. Since beta-Glu-199 is labeled to the same extent in the two experiments while alpha-Glu-402 and beta-Glu-341 were not, suggests that the modification of beta-Glu-199 is responsible for inactivation of the enzyme by EEDQ.  相似文献   

19.
Reaction ofKlebsiella aerogenes urease with diethylpyrocarbonate (DEP) led to a pseudo-first-order loss of enzyme activity by a reaction that exhibited saturation kinetics. The rate of urease inactivation by DEP decreased in the presence of active site ligands (urea, phosphate, and boric acid), consistent with the essential reactive residue being located proximal to the catalytic center. ThepH dependence for the rate of inactivation indicated that the reactive residue possessed apK a of 6.5, identical to that of a group that must be deprotonated for catalysis. Full activity was restored when the inactivated enzyme was treated with hydroxylamine, compatible with histidinyl or tyrosinyl reactivity. Spectrophotometric studies were consistent with DEP derivatization of 12 mol of histidine/mol of native enzyme. In the presence of active site ligands, however, approximately 4 mol of histidine/mol of protein were protected from reaction. Each protein molecule is known to possess two catalytic units; hence, we propose that urease possesses at least one essential histidine per catalytic unit.  相似文献   

20.
The intact, 100 kd microsomal enzyme and the 53 kd catalytic fragment of rat HMG-CoA reductase are both phosphorylated and inactivated by the AMP-activated protein kinase. Using the catalytic fragment, we have purified and sequenced peptides containing the single site of phosphorylation. Comparison with the amino acid sequence predicted from the cDNAs encoding other mammalian HMG-CoA reductases identifies this site as a serine residue close to the C-terminus (Ser872 in the human enzyme). Phosphopeptide mapping of native, 100 kd microsomal HMG-CoA reductase confirms that this C-terminal serine is the only major site phosphorylated in the intact enzyme by the AMP-activated protein kinase. The catalytic fragment of HMG-CoA reductase was also isolated from rat liver in the presence of protein phosphatase inhibitors under conditions where the enzyme is largely in the inactive form. HPLC, mass spectrometry and sequencing of the peptide containing Ser872 demonstrated that this site is highly phosphorylated in intact liver under these conditions. We have also identified by amino acid sequencing the N-terminus of the catalytic fragment, which corresponds to residue 423 of the human enzyme.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号