首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Cannabis use has been increasing worldwide for recreational and medical purposes. Consumption by pregnant women is associated with disturbances in pregnancy outcome, such as low birth weight, prematurity and intrauterine growth retardation, though the underlying biochemical mechanisms are unknown. The endocannabinoid system is involved in several reproductive events and the disruption of its homeostasis by ∆9-tetrahydrocannabinol (THC), the main psychoactive cannabinoid, may lead to a negative gestational outcome. In human placenta, THC impairs the levels of the endocannabinoid anandamide (AEA). The other major endocannabinoid, 2-arachidonoylglycerol (2-AG) also plays an important role on proper placentation and pregnancy success. However, THC impact on 2-AG homeostasis has never been addressed. Hence, the effects of THC in 2-AG levels and metabolic enzymes expression were explored. Long-term treatment impairs the expression of the main 2-AG synthetic and degradative enzymes. Curiously, with the highest concentration, despite the maintenance of diacylglycerol lipase alpha (DAGLα) and the decrease in monoacylglycerol lipase (MAGL) expression, 2-AG levels remain constant. Given the endocannabinoid signalling local tight regulation, we hypothesize the involvement of other 2-AG degradative enzymes. Indeed, THC increases the expression of the hydrolyzing enzymes alpha beta hydrolase domain-6 (ABHD6) and -12 (ABHD12), that we firstly describe in human placental tissues. The results show that THC, depending on time of exposure, induces alterations in 2-AG metabolic enzymes expression in placental explants, highlighting the importance of 2-AG regulation and endocannabinoid signalling in placental development. Alterations in this homeostasis may explain the negative pregnancy outcome related to cannabis consumption.  相似文献   

2.
Anandamide (N -arachidonoylethanolamine, AEA) is a major endocannabinoid, shown to impair mouse pregnancy and embryo development and to induce apoptosis in blastocysts. Here, we review the roles of AEA, of the AEA-binding cannabinoid (CB) receptors, of the selective AEA membrane transporter (AMT), and of the AEA-hydrolyzing enzyme fatty acid amide hydrolase (FAAH), in human gestation. In particular, we discuss the interplay between the endocannabinoid system and the hormone-cytokine array involved in the control of human pregnancy, showing that the endocannabinoids take part in the immunological adaptation occurring during early pregnancy. In this line, we discuss the critical role of FAAH in human peripheral lymphocytes, showing that the expression of this enzyme is regulated by progesterone, Th1 and Th2 cytokines, which also regulate fertility. Moreover, we show that AEA and the other endocannabinoid, 2-arachidonoylglycerol, inhibit the release of the fertility-promoting cytokine leukemia inhibitory factor from human lymphocytes. Taken together, low FAAH and consistently high blood levels of AEA, but not CB receptors or AMT, can be early (<8 weeks of gestation) markers of spontaneous abortion, potentially useful as diagnostic tools for large-scale, routine monitoring of gestation in humans.  相似文献   

3.
The hypothalamus plays an important role in the regulation of several visceral processes, including food intake, thermoregulation and control of anterior pituitary secretion.Endogenous cannabinoids and CB(1) cannabinoid receptors have been found in the hypothalamus. In the present review, we would like to clarify the role of the endocannabinoid system in the regulation of the above-mentioned visceral functions.There is historical support for the role of marihuana (i.e. exogenous cannabinoids) in the regulation of appetite. Endocannabinoids also stimulate food intake. Furthermore, the specific CB(1) receptor antagonist SR141716 reduces food intake. Leptin treatment decreases endocannabinoid levels in normal rats and ob/ob mice. These findings provide evidence for the role of the hypothalamic endocannabinoid system in food intake and appetite regulation.Cannabinoids can change body temperature in a dose-dependent manner. High doses cause hypothermia while low doses cause hyperthermia. Cannabinoid administration decreases heat production. It seems that the effects of can- nabinoids on thermoregulation is exerted by altering some neurochemical mediator effects at both the presynaptic and postsynaptic level.THC and endocannabinoids have mainly inhibitory effects on the regulation of reproduction. Administration of anandamide (AEA) decreases serum luteinizing hormone (LH) and prolactin (PRL) levels. AEA causes a prolongation of pregnancy in rats and temporarily inhibits the postnatal development of the hypothalamo-pituitary axis in offspring. The action of AEA on the reproductory parameters occurs at both the hypothalamic and pituitary level. CB(1) receptors have also been found in the anterior pituitary. Further, LH levels in CB(1) receptor-inactivated mice were decreased compared with wild-type mice.Taken together, all these observations suggest that the endocannabinoid system is playing an important part in the regulation of the mentioned visceral functions and it provides the bases for further applications of cannabinoid receptor agonists and/or antagonists in visceral diseases regulated by the hypothalamus.  相似文献   

4.
Obesity and cardiometabolic risk continue to be major public health concerns. A better understanding of the physiopathological mechanisms leading to obesity may help to identify novel therapeutic targets. The endocannabinoid system discovered in the early 1990s is believed to influence body weight regulation and cardiometabolic risk factors. This article aims to review the literature on the endocannabinoid system including the biological roles of its major components, namely, the cannabinoid receptors, their endogenous ligands the endocannabinoids and the ligand-metabolising enzymes. The review also discusses evidence that the endocannabinoid system constitutes a new physiological pathway occurring in the central nervous system and peripheral tissues that has a key role in the control of food intake and energy expenditure, insulin sensitivity, as well as glucose and lipid metabolism. Based on the important finding that there is a close association between obesity and the hyperactivity of the endocannabinoid system, interest in blocking stimulation of this pathway to aid weight loss and reduce cardiometabolic risk factor development has become an important area of research. Among the pharmacological strategies proposed, the antagonism of the cannabinoid receptors has been particularly investigated and several clinical trials have been conducted. One challenging pharmacological task will be to target the endocannabinoid system in a more selective, and hence, safe way. As the management of obesity also requires lifestyle modifications in terms of healthy eating and physical activity, the targeting of the endocannabinoid system may represent a novel approach for a multifactorial therapeutic strategy.  相似文献   

5.
The endocannabinoid system (ECS) plays a fundamental role in the regulation of synaptic transmission. Exposure to stressful events triggers synaptic adaptations in many brain areas. The activity of the ECS in stress-responsive neural circuits suggests that it may be involved in the behavioral responses and synaptic effects typical of stress. In this review, we discuss evidence demonstrating that striatal ECS is modulated by stress. Chronic stress exposure alters endocannabinoid levels, cannabinoid CB1 receptor binding and cannabinoid CB1 receptor-mediated control of inhibitory synaptic transmission in the striatum. Recent studies have shown that impairment of endocannabinoid signalling is associated with inability to adapt to chronic stress and to the development of maladaptive behaviors. The ECS represents a novel potential pharmacological target to treat stress-associated neuropsychiatric conditions.  相似文献   

6.
The role of the endocannabinoid system in several diseases is currently under intense study. Among these, Alzheimer's disease may be a new promising area of research. We have recently reported the existence of profound changes in the location and density of several elements of this system in Alzheimer's disease tissue samples, indicating that a non-neuronal endocannabinoid system is up-regulated in activated glia. Additional data from other groups suggest that glial cells may be important elements in the regulation of endocannabinoid system activity, both in health as in disease. Some of these aspects are briefly discussed in the present review.  相似文献   

7.
Endocannabinoids in cognition and dependence   总被引:9,自引:0,他引:9  
Cannabis use is associated with a wide range of pharmacological effects, some of which have potential therapeutic benefit while others result in negative outcomes. Acute cannabinoid intoxication has been well documented to produce deficits in cognitive functioning with concomitant changes in glutamatergic, GABAergic, and cholinergic neurochemical systems in the hippocampus, each of which has been implicated in memory. Additionally, cannabis-dependent individuals abstaining from this drug can undergo a constellation of mild withdrawal effects. The use of the CB(1) cannabinoid receptor antagonist SR141716A and transgenic mice lacking the CB(1) receptor are critical tools for investigating the role of the endocannabinoid system in cognition, drug dependence, and other physiological processes. Converging evidence in which performance in a variety of memory tasks is enhanced following either SR141716A treatment or in CB(1) receptor knockout mice indicates that this system may play an important role in modulating cognition. There are also indications that this system may function to modulate opioid dependence. The purpose of this review is to describe recent advances that have furthered our understanding of the roles that the endocannabinoid system play on both cognition and drug dependence.  相似文献   

8.
Numerous studies have documented prolactin regulation of a variety of brain functions, including maternal behavior, regulation of oxytocin neurons, regulation of feeding and appetite, suppression of ACTH secretion in response to stress, and suppression of fertility. We have observed marked changes in expression of prolactin receptors in specific hypothalamic nuclei during pregnancy and lactation. This has important implications for neuronal functions regulated by prolactin. In light of the high circulating levels of prolactin during pregnancy and lactation and the increased expression of prolactin receptors in the hypothalamus, many of these functions may be enhanced or exaggerated in the maternal brain. The adaptations of the maternal brain allow the female to exhibit the appropriate behavior to feed and nurture her offspring, to adjust to the nutritional and metabolic demands of milk production, and to maintain appropriate hormone secretion to allow milk synthesis, secretion, and ejection. This review aims to summarize the evidence that prolactin plays a key role in regulating hypothalamic function during lactation and to discuss the hypothesis that the overall role of prolactin is to organize and coordinate this wide range of behavioral and neuroendocrine adaptations during pregnancy and lactation.  相似文献   

9.
AimsThis review posits that fatty acid amide hydrolase (FAAH) inhibition has therapeutic potential against neuropathological states including traumatic brain injury; Alzheimer's, Huntington's, and Parkinson's diseases; and stroke.Main methodsThis proposition is supported by data from numerous in vitro and in vivo experiments establishing metabolic and pharmacological contexts for the neuroprotective role of the endogenous cannabinoid (“endocannabinoid”) system and selective FAAH inhibitors.Key findingsThe systems biology of endocannabinoid signaling involves two main cannabinoid receptors, the principal endocannabinoid lipid mediators N-arachidonoylethanolamine (“anandamide”) (AEA) and 2-arachidonoyl glycerol (2-AG), related metabolites, and the proteins involved in endocannabinoid biosynthesis, biotransformation, and transit. The endocannabinoid system is capable of activating distinct signaling pathways on-demand in response to pathogenic events or stimuli, thereby enhancing cell survival and promoting tissue repair. Accumulating data suggest that endocannabinoid system modulation at discrete targets is a promising pharmacotherapeutic strategy for treating various medical conditions. In particular, neuronal injury activates cannabinoid signaling in the central nervous system as an intrinsic neuroprotective response. Indirect potentiation of this salutary response through pharmacological inhibition of FAAH, an endocannabinoid-deactivating enzyme, and consequent activation of signaling pathways downstream from cannabinoid receptors have been shown to promote neuronal maintenance and function.SignificanceThis therapeutic modality has the potential to offer site- and event-specific neuroprotection under conditions where endocannabinoids are being produced as part of a physiological protective mechanism. In contrast, direct application of cannabinoid receptor agonists to the central nervous system may activate CB receptors indiscriminately and invite unwanted psychotrophic effects.  相似文献   

10.
The endogenous cannabinoid system has revealed potential avenues to treat many disease states. Medicinal indications of cannabinoid drugs including compounds that result in enhanced endocannabinoid responses (EER) have expanded markedly in recent years. The wide range of indications covers chemotherapy complications, tumor growth, addiction, pain, multiple sclerosis, glaucoma, inflammation, eating disorders, age-related neurodegenerative disorders, as well as epileptic seizures, traumatic brain injury, cerebral ischemia, and other excitotoxic insults. Indeed, a great effort has led to the discovery of agents that selectively activate the cannabinoid system or that enhance the endogenous pathways of cannabinergic signaling. The endocannabinoid system is comprised of three primary components: (i) cannabinoid receptors, (ii) endocannabinoid transport system, and (iii) hydrolysis enzymes that break down the endogenous ligands. Two known endocannabinoids, anandamide (AEA) and 2-arachidonoyl glycerol (2-AG), are lipid molecules that are greatly elevated in response to a variety of pathological events. This increase in endocannabinoid levels is suggested to be part of an on-demand compensatory response. Furthermore, activation of signaling pathways mediated by the endogenous cannabinoid system promotes repair and cell survival. Similar cell maintenance effects are elicited by EER through inhibitors of the endocannabinoid deactivation processes (i.e., internalization and hydrolysis). The therapeutic potential of the endocannabinoid system has yet to be fully determined, and the number of medical maladies that may be treated will likely continue to grow. This review will underline studies that demonstrate medicinal applications for agents that influence the endocannabinoid system.  相似文献   

11.
Secretory immunoglobulin A (S-IgA) represents the main adaptive immune mechanism in the oral cavity. The regulation of secretion and synthesis of S-IgA is not only dependent on prior antigenic stimulation, but is also under strong neuroendocrine control. Thus, alterations in neuroendocrine functioning (such as induced by stress, exercise, pregnancy, menstrual cycle, and pharmacological interventions) may affect salivary IgA levels. This review deals with the neuroendocrine regulation of synthesis and secretion of salivary IgA and its potential role in the maintenance of oral health.  相似文献   

12.
PURPOSE OF REVIEW: As the incidence of obesity and the metabolic syndrome has increased, research has focused on the importance of the endocannabinoid system in the brain and peripheral tissues. Rimonabant, an inverse agonist of the CB1 receptor is being used therapeutically. This review presents recent advances in endocannabinoid physiology. RECENT FINDINGS: The endocannabinoid system interacts with other anorexigenic and orexigenic pathways to regulate food intake in the hypothalamus, and the hedonistic value of food in the mesolimbic system. Endocannabinoid system overactivity contributes to hepatic steatosis, increased adipose tissue inflammation, dysregulated insulin signalling in the pancreas and disturbed oxidative pathways in skeletal muscle. The breakdown pathways for anandamide and 2-arachidonoylglycerol, the endocannabinoid receptor ligands, are reviewed, and the recent discoveries of endocannabinoid receptor polymorphisms and their relationship to obesity and metabolic disease noted. The favourable effect of rimonabant on fat mass glycaemic control, lipid metabolism and overall cardiovascular risk must be tempered by adverse effects on mood. SUMMARY: The ubiquitous role of the endocannabinoid system in food intake and energy metabolism is now established. Drugs that manipulate different aspects of this system may benefit subjects with the metabolic and cachectic syndromes.  相似文献   

13.
Habayeb OM  Bell SC  Konje JC 《Life sciences》2002,70(17):1963-1977
Over the past two decades a number of endogenous compounds that act as ligands for the cannabinoid receptors has been discovered. In analogy with the "endorphins" these compounds have been called "endocannabinoids". Endocannabinoids have been demonstrated in many mammalian tissues including humans and are widely distributed in the CNS, peripheral nerves, uterus, leukocytes, spleen and testicles. The uterus contains the highest levels of anandamide, the first discovered endocannabinoid, suggesting an important role for this substance in reproduction. Several studies have shown anandamide to be involved in the regulation of implantation and reduced activity of the enzyme that degrades anandamide has been associated with early pregnancy loss in humans. The bulk of the literature concerning endocannabinoids is based upon anandamide related studies; therefore, in this review we focus on the metabolism of anandamide and its role in reproduction.  相似文献   

14.
Cannabis is the most used recreational drug in the world. One of the major concerns of exposure to the cannabis is its negative effect on the reproductive function. The discovery of the endocannabinoid system, composed of multiple endogenous lipid ligands, their receptors and their metabolic enzymes, highlights the importance of the signaling pathways of this system in multiple events of reproduction. The objective of this study is to review the impact of the cannabis on male reproductive function. The limits and the perspective possible studies to evaluate the effects of the cannabis on male fertility are discussed in this study on the basis of the studies carried out on men and animals.  相似文献   

15.
Maccarrone M 《Life sciences》2005,77(14):1559-1568
Endocannabinoids are biologically active amides, esters and ether of long chain polyunsaturated fatty acids. They interact with several neurotransmitters in the central nervous system (CNS), and with various signaling molecules (including cytokines) in the periphery. Critical interactions have emerged also with steroids, another group of well-known bioactive lipids, both centrally and peripherally. Here, I briefly review the targets of the combined action of endocannabinoids and steroids, and the available evidence concerning the direct regulation by the latter compounds of the proteins of the endocannabinoid system (ES). In addition, I discuss recent examples of endocannabinoids and steroids working together in the central nervous system and in the periphery, which allowed to disclose some molecular details of the interactions between these two groups of lipids. Taken together, available data suggest that steroids can modulate the endocannabinoid tone, through genomic or nongenomic regulation, and that endocannabinoids can complement the biological activity of steroids. In this line, the issues concerning the tissue- and species-specificity of the endocannabinoid-steroid interface, and the possibility that also endocannabinoids may modulate steroid metabolism, are addressed. Finally, I present the hypothesis that retrograde endocannabinoid signaling, by reducing striatal glutamate release, may be part of the molecular events responsible for the influence of steroids on drug abuse.  相似文献   

16.
Alzheimer's disease (AD) is a neurodegenerative disorder which accounts for 60–70% of the 50 million worldwide cases of dementia and is characterised by cognitive impairments, many of which have long been associated with dysfunction of the cholinergic system. Although the M1 muscarinic acetylcholine receptor (mAChR) is considered a promising drug target for AD, ligands targeting this receptor have so far been unsuccessful in clinical trials. As modulatory receptors to cholinergic transmission, the endocannabinoid system may be a promising drug target to allow fine tuning of the cholinergic system. Furthermore, disease-related changes have been found in the endocannabinoid system during AD progression and indeed targeting the endocannabinoid system at specific disease stages alleviates cognitive symptoms in numerous mouse models of AD. Here we review the role of the endocannabinoid system in AD, and its crosstalk with mAChRs as a potential drug target for cholinergic dysfunction.  相似文献   

17.
The last decade has provided a wealth of experimental data on the role played by lipids belonging to the endocannabinoid family in several facets of physiopathology of dopamine neurons. We currently suggest that these molecules, being intimately connected with diverse metabolic and signalling pathways, might differently affect various functions of dopamine neurons through activation not only of surface receptors, but also of nuclear receptors. It is now emerging how dopamine neurons can regulate their constituent biomolecules to compensate for changes in either internal functions or external conditions. Consequently, dopamine neurons use these lipid molecules as metabolic and homeostatic signal detectors, which can dynamically impact cell function and fitness. Because dysfunctions of the dopamine system underlie diverse neuropsychiatric disorders, including schizophrenia and drug addiction, the importance of better understanding the correlation between an unbalanced endocannabinoid signal and the dopamine system is even greater. Particularly, because dopamine neurons are critical in controlling incentive-motivated behaviours, the involvement of endocannabinoid molecules in fine-tuning dopamine cell activity opened new avenues in both understanding and treating drug addiction. Here, we review recent advances that have shed new light on the understanding of differential roles of endocannabinoids and their cognate molecules in the regulation of the reward circuit, and discuss their anti-addicting properties, particularly with a focus on their potential engagement in the prevention of relapse.  相似文献   

18.
The endocannabinoid system is a valuable target for drug discovery, because it is involved in the regulation of many cellular and physiological functions. The endocannabinoid system constitutes the endogenous lipids anandamide, 2-arachidonoylglycerol and noladin ether, and the cannabinoid CB1 and CB2 receptors as well as the proteins for their inactivation. It is thought that (endo)cannabinoid-based drugs may potentially be useful to reduce the effects of neurodegeneration. This paper reviews recent developments in the endocannabinoid system and its involvement in neuroprotection. Exogenous (endo)cannabinoids have been shown to exert neuroprotection in a variety of in vitro and in vivo models of neuronal injury via different mechanisms, such as prevention of excitotoxicity by CB1-mediated inhibition of glutamatergic transmission, reduction of calcium influx, and subsequent inhibition of deleterious cascades, TNF-α formation, and anti-oxidant activity. It has been suggested that the release of endogenous endocannabinoids during neuronal injury might be a protective response. However, several observations indicate that the role of the endocannabinoid system as a general endogenous protection system is questionable. The data are critically reviewed and possible explanations are given.  相似文献   

19.
This review discusses clinical and preclinical evidence that supports the use of cannabinoid receptor agonists for the management of multiple sclerosis. In addition, it considers preclinical findings that suggest that as well as ameliorating signs and symptoms of multiple sclerosis, cannabinoid CB1 and/or CB2 receptor activation may suppress some of the pathological changes that give rise to these signs and symptoms. Evidence that the endocannabinoid system plays a protective role in multiple sclerosis is also discussed as are potential pharmacological strategies for enhancing such protection in the clinic.  相似文献   

20.
内源性大麻素系统包括大麻素受体、内源性配体以及参与其合成与降解的酶类,在人体内广泛分布,参与诸多生理和病理生理过程。新近报道内源性大麻素系统在中枢神经系统的许多疾病的病理生理过程中扮演重要的角色。对内源性大麻素系统的研究,不仅能阐明一些疾病的病理生理机制,还有助于新药研发并为疾病治疗提供新的方向。本文基于现有的文献报道,就内源性大麻素系统及其在一些中枢神经疾病特别是脑缺血和帕金森病的发病机制的新进展进行综述。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号