首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
本文重点概述LncRNA参与细胞分化的相关机制,列举了LncRNA在不同细胞系中参与调控的各种作用方式,如LncRNA参与维持胚胎干细胞多潜能状态、胚胎干细胞分化、神经细胞分化、肌肉分化、表皮细胞分化、成骨细胞分化、脂肪生成的机制等.  相似文献   

2.
红肉脐橙前期花芽形态分化研究   总被引:1,自引:0,他引:1  
为了摸清红肉脐橙的花芽分化时期,以便在适宜的时期采取措施调控花芽分化,确保每年都有适宜的花量,为高产稳产奠定基础。2006~2007年,笔者采用石蜡切片法观察了红肉脐橙花芽形态分化过程。结果表明,红肉脐橙花芽分化从11月上旬开始,11月下旬开始萼片分化,翌年1月中旬进入花瓣分化期,2月上旬雄蕊、雌蕊分化开始,每个时期都历时较长。其过程可分为生理分化期、花芽分化期、花萼分化期、花瓣分化期、雄蕊分化期、雌蕊分化期和子房形成期7个时期。红肉脐橙花量大,其花芽分化过程比较缓慢,分化期也较分散,分化时间长,每个时期都有重叠交叉现象。  相似文献   

3.
中国水仙花芽分化观察及储藏条件对花芽数的影响研究   总被引:3,自引:1,他引:2  
以三年生中国水仙‘金盏银台’为材料,采用石蜡切片法观察其花芽形态分化过程。结果表明:中国水仙的花芽分化从7月上旬开始,到9月中旬形成雌蕊结束。其过程可分为叶芽时期、花序原基形成期、佛焰状总苞形成期、花原基形成期、花冠形成期、雄蕊形成期、雌蕊形成期7个时期。其中花冠形成期较长,20 d左右。花芽的外部形态变化上,分化后期芽的生长速度明显快于前期。对鳞茎球内花序数量的统计结果显示,高温储藏及烟熏法共同使用对中国水仙花序的形成具有很好的促进作用。  相似文献   

4.
易仁知  秦俊  黄清俊 《西北植物学报》2023,43(10):1760-1769
以穗花牡荆为研究材料,通过探究其花芽分化进程和生理特性,为花期调控技术提供成花机理。采用物候期观察和石蜡切片相结合的方法并测定花芽分化过程中相关生理指标,研究花发育过程中的形态和生理变化。结果表明,穗花牡荆花芽分化为一年多次分化型,其进程可划分为七个时期:未分化期、总轴花序原基分化期、初级分轴花序原基分化期、次级分轴花序原基分化期、小花原基分化期、花器官分化前期和花器官分化后期。同一植株不同位置花芽及同一花序中不同单花分化的进程不同,第一季花期后各阶段的花芽分化形态常存在重叠。花芽分化过程中不同时期叶片和花芽的可溶性糖和可溶性蛋白质含量均有上升下降的变化,总体上叶片中营养物质含量高于花芽保证营养供应。花芽分化过程中,IAA、ABA、CTK和GA3整体水平上先升后降有利于花芽分化进行。研究认为,花芽中大量的可溶性糖和蛋白质积累及较高的碳氮比,有利于穗花牡荆花芽形态分化顺利完成。低水平的GA3/ABA和IAA/CTK有利于花序的形成,ABA/CTK和ABA/IAA比值升高促进小花原基和小花萼片原基的分化, GA3/CTK、GA3/ABA和GA3/IAA比值升高促进花瓣原基、雄雌蕊原基发育。  相似文献   

5.
A key question in eukaryotic differentiation is whether there are common regulators or biochemical events that are required for diverse types of differentiation or whether there is a core mechanism for differentiation. The unicellular model organism Saccharomyces cerevisiae undergoes filamentous differentiation in response to environmental cues. Because conserved cell cycle regulators, the mitotic cyclin-dependent kinase Clb2/Cdc28, and its inhibitor Swe1 were found to be involved in both nitrogen starvation- and short chain alcohol-induced filamentous differentiation, they were identified as components of the core mechanism for filamentous differentiation. We report here that slowed DNA synthesis also induces yeast filamentous differentiation through conserved checkpoint proteins Mec1 and Rad53. Swe1 and Clb2 are also involved in this form of differentiation, and the core status of Swe1/Clb2/Cdc28 in the mechanism of filamentous differentiation has therefore been confirmed. Because the cAMP and filamentous growth mitogen-activated protein kinase pathways that mediate nitrogen starvation-induced filamentous differentiation are not required for slowed DNA synthesis-induced filamentous growth, they can therefore be excluded from the core mechanism. More significantly, slowed DNA synthesis also induces differentiation in mammalian cancer cells, and such stimulus conservation may indicate that the core mechanism for yeast filamentous differentiation is conserved in mammalian differentiation.  相似文献   

6.
以新疆主栽品种灰枣和骏枣的花芽为材料,测定不同分化时期花芽的可溶性糖、还原糖、淀粉、可溶性蛋白含量,SOD、POD、PPO、CAT活性以及内源GA3、IAA、ABA、ZT水平的变化,并分析它们与花芽分化的关系,为枣花芽分化调控提供理论参考.结果表明:(1)灰枣和骏枣花芽可溶性糖、还原糖和淀粉含量在花芽分化过程的变化趋势...  相似文献   

7.
Apoptosis repressor with caspase recruitment domain (ARC), an anti-apoptotic protein, is highly expressed in differentiated heart and skeletal muscle. Apoptosis and differentiation share numerous common pathways; therefore, we examined the impact of ARC on H9c2-myoblast differentiation. We demonstrate that ARC expression levels increase and stabilize upon differentiation. ARC-overexpression in pre-differentiated H9c2-cells suppresses differentiation; indicated by increased myotube formation, nuclear fusion and expression of the differentiation markers myogenin and troponin-T. ARC-overexpression inhibited myoblast differentiation associated caspase-3 activation, suggesting ARC inhibits myogenic differentiation through caspase inhibition. In summary, we show a novel role for ARC in the regulation of muscle differentiation.  相似文献   

8.
采用石蜡切片和酶联免疫法(ELISA)对罗汉果雄性、雌性、两性花芽分化过程的形态和激素水平变化进行观测,为罗汉果开花调控和品种选育提供科学依据。结果表明:(1)罗汉果雄性、雌性、两性花的花芽分化过程均可分为花芽未分化期、花芽分化初期、花序分化期、萼片原基分化期、花瓣原基分化期、雄蕊原基分化期和雌蕊原基分化期7个阶段。雄蕊原基分化期前,3种花芽分化过程无明显差异,各时期形态特征均依次为:茎端呈圆锥状(花芽未分化期)→茎端经半球形变成扁平状(花芽分化初期)→距茎端5~7节位处分化出穗状花序(花序分化期)→小花原基周围形成5个萼片原基(萼片原基分化期)→萼片原基内侧形成5个花瓣原基(花瓣原基分化期)。雄蕊和雌蕊原基分化期,3种花芽分化过程存在明显差异,雄蕊原基内侧出现雌蕊原基后,雄花芽雄蕊原基继续发育成雄蕊,雌蕊原基停滞生长,退为一个小突起;雌花芽雌蕊原基继续发育成雌蕊,雄蕊原基生长缓慢,退化为小花丝;两性花芽雌蕊和雄蕊原基均继续发育,形成外观正常的雌蕊和雄蕊。(2)内源激素脱落酸(ABA)、赤霉素(GAs)和玉米素核苷(ZR)含量在3种花芽分化过程中变化规律相似,即ABA含量在花芽生理分化期降低,花芽形态分化期升高,而GAs和ZR含量则基本保持不变;吲哚乙酸(IAA)含量在3种花芽分化过程中变化存在明显差异,雌花芽IAA含量在花芽生理分化期升高,花芽形态分化期逐渐降低,而雄性和两性花芽的IAA含量则基本保持不变。ABA/GAs、ABA/IAA、ZR/IAA和ZR/GAs激素含量比值在3种花芽分化过程中变化规律相似,ABA/GAs在花芽生理分化期降低,花芽形态分化期升高,而BA/IAA、ZR/IAA和ZR/GAs则基本保持不变。研究认为,罗汉果花芽分化过程经历一个"两性期",高ABA含量和ABA/GAs比值有利于罗汉果花芽分化,IAA可能对罗汉果花性分化具有重要作用。  相似文献   

9.
采用石蜡切片技术和形态观察对香港四照花(Dendrobenthamia hongkongensis(Hemsl.)Hutch.)花芽分化过程中花芽的形态变化进行观测,研究花芽外部形态与花芽分化之间的关系。结果显示,香港四照花的花芽分化开始于7月上旬,到9月底完成,形态分化过程可分为8个时期:未分化期、花序原基分化期、小花原基分化期、花萼原基分化期、花瓣原基分化期、雄蕊原基分化期、雌蕊原基分化期、雌蕊雄蕊形成期。与之对应的外部形态变化为:混合芽闭合,混合芽基部膨大,新叶展开露出圆形花序,花柄初现,花序膨大,花序表面小花突起,花柄伸长至4~6 mm,花序表面小花轮廓明显。香港四照花花芽外部形态能直观地反映出内部结构变化,可根据花芽外部形态特征推测花芽分化状况。研究结果可为香港四照花花期调控和栽培管理提供科学依据。  相似文献   

10.
Glutathione plays an important role in various cellular functions including cell growth and differentiation. In the present study, cell differentiation was induced by butyrate in human colon cell line HT-29 and cellular thiol status was assessed. It was observed that butyrate-induced differentiation was associated with decrease in cellular GSH level and this was prominent at early stages of differentiation. Buthionine sulfoximine (BSO), a specific cellular GSH depleting agent, did not induce differentiation in cells but potentiated the differentiation induced by butyrate. Both BSO and butyrate individually and together inhibited cell growth. These studies suggest that cellular GSH level is modulated in butyrate-induced differentiation and decrease of GSH at the initial stage might facilitate cellular differentiation.  相似文献   

11.
The effects of interleukin-4(IL-4) on the growth and differentiation of mouse myeloid leukemia M1 cells induced by various differentiation inducers were investigated. IL-4 alone did not have any significant effect on the growth or differentiation of M1 cells, but inhibited their differentiation induced by dexamethasone, D-factor/leukemia inhibitory factor, or interleukin 6. IL-4 also restored the proliferation of M1 cells after growth inhibition during their induction of differentiation by inducers. In contrast, IL-4 enhanced inhibition of growth and induction of differentiation of M1 cells by 1 alpha,25-dihydroxyvitamin D3. These results indicate that modulation of differentiation of M1 cells by IL-4 depends on the differentiation inducer.  相似文献   

12.
Flower bud differentiation is a key component of plant blooming biology and understanding how it works is vital for flowering regulation and plant genetic breeding, increasing the number and quality of flowering. Red soil is the most widely covered soil type in the world, and it is also the most suitable soil type for crape myrtle planting. The flower buds of crape myrtle (Lagerstroemia indica) planted in red soil were employed as experimental materials in this study, and the distinct periods of differentiation were identified using stereomicroscopy and paraffin sectioning. We optimized the steps of dehydration, transparency, embedding, sectioning and staining when employing paraffin sections. When seen under a microscope, this optimization can make the cell structure of paraffin sections obvious, the tissue structure complete, and the staining clear and natural. The flower bud differentiation process is divided into 7 periods based on anatomical observations of the external morphology and internal structure during flower bud differentiation: undifferentiated period, start of differentiation period, inflorescence differentiation period, calyx differentiation period, petal differentiation period, stamen differentiation period, and pistil differentiation period. The differentiation time is concentrated from the end of May to mid-June. Crape myrtle flower bud differentiation is a complicated process, and the specific regulatory mechanism and affecting elements need to be investigated further.  相似文献   

13.
14.
Both the intracellular and the extracellular differentiation of Trypanosoma cruzi amastigotes was studied. Intracellular differentiation was monitored during the parasite's cycle of infection in mammalian cells, and extracellular differentiation was monitored after transfer of the parasites to Warren's medium at 27 C. Several different chemical antagonists of ADP-ribosyl transferase inhibited parasite differentiation in both systems. This inhibition was mediated by a specific effect on the differentiation process and could not be ascribed to interference with simple proliferation of the parasite. The effect is strikingly similar to that observed in studies of the cell differentiation of several higher animals and suggests that ADP-ribosyl transferase frequently constitutes an important element in the mechanism of eukaryotic cell differentiation.  相似文献   

15.
In a previous study, the Notch pathway inhibited with N-[N-(3,5-difluorophenacetyl)-L-alanyl]-S-phenylglycine t-butyl ester (also called DAPT) was shown to promote the differentiation of fetal liver stem/progenitor cells (FLSPCs) into hepatocytes and to impair cholangiocyte differentiation. The precise mechanism for this, however, was not elucidated. Two mechanisms are possible: Notch inhibition might directly up-regulate hepatocyte differentiation via HGF (hepatocyte growth factor) and HNF (hepatocyte nuclear factor)-4α or might impair cholangiocyte differentiation thereby indirectly rendering hepatocyte differentiation as the dominant state. In this study, HGF and HNF expression was detected after the Notch pathway was inhibited. Although our initial investigation indicated that the inhibition of Notch induced hepatocyte differentiation with an efficiency similar to the induction via HGF, the results of this study demonstrate that Notch inhibition does not induce significant up-regulation of HGF or HNF-4α in FLSPCs. This suggests that Notch inhibition induces hepatocyte differentiation without the influence of HGF or HNF-4α. Moreover, significant down-regulation of HNF-1β was observed, presumably dependent on an impairment of cholangiocyte differentiation. To confirm this presumption, HNF-1β was blocked in FLSPCs and was followed by hepatocyte differentiation. The expression of markers of mature cholangiocyte was impaired and hepatocyte markers were elevated significantly. The data thus demonstrate that the inhibition of cholangiocyte differentiation spontaneously induces hepatocyte differentiation and further suggest that hepatocyte differentiation from FLSPCs occurs at the expense of the impairment of cholangiocyte differentiation, probably being enhanced partially via HNF-1β down-regulation or Notch inhibition.  相似文献   

16.
17.
Pluripotency of embryonic stem cells (ESCs) is maintained by the balancing of several signaling pathways, such as Wnt, BMP, and FGF, and differentiation of ESCs into a specific lineage is induced by the disruption of this balance. Sulfated glycans are considered to play important roles in lineage choice of ESC differentiation by regulating several signalings. We examined whether reduction of sulfation by treatment with the chemical inhibitor chlorate can affect differentiation of ESCs. Chlorate treatment inhibited mesodermal differentiation of mouse ESCs, and then induced ectodermal differentiation and accelerated further neural differentiation. This could be explained by the finding that several signaling pathways involved in the induction of mesodermal differentiation (Wnt, BMP, and FGF) or inhibition of neural differentiation (Wnt and BMP) were inhibited in chlorate-treated embryoid bodies, presumably due to reduced sulfation on heparan sulfate and chondroitin sulfate. Furthermore, neural differentiation of human induced pluripotent stem cells (hiPSCs) was also accelerated by chlorate treatment. We propose that chlorate could be used to induce efficient neural differentiation of hiPSCs instead of specific signaling inhibitors, such as Noggin.  相似文献   

18.
19.
Myeloid differentiation of HL-60 human promyelocytic leukemia cells was studied during DMSO-induced differentiation. G 1/0-specific growth arrest could occur without the usual associated subsequent phenotypic differentiation into mature myeloid cells, suggesting that growth arrest and phenotypic differentiation are separately regulated. In the course of differentiating, the cells achieved a semi-stable intermediate state where they had a labile, pre-commitment memory of exposure to inducer, but were not yet committed to differentiation. This state was associated with a nuclear structural change previously found to be associated with the precommitment memory state. The process of differentiation could thus be resolved into two steps, early events up through development of pre-commitment memory and late events subsequents to pre-commitment memory. The kinetics of terminal cell differentiation indicated that the cellular regulatory event initiating a program of differentiation in response to inducer was S phase-specific. A comparison of the present results for DSMO to previous results for retinoic acid (RA)-induced HL-60 myeloid differentiation showed that the two inducers effect different cellular pathways for differentiation of HL-60 cells to mature myeloid cells, but with certain common features including the above S-phase specificity and pre-commitment memory.  相似文献   

20.
Role of mitogen activated protein kinases (MAPK) in skeletal muscle differentiation is not fully understood. We investigated subtype-specific functions and their interactions, if any, in the regulation of myogenic differentiation in L6E9 skeletal muscle cells. We show inhibition of extracellular signal-regulated kinase-1 and -2 (ERK-1/-2) and activation of p38 MAP kinase during the differentiation of L6E9 rat skeletal muscle cells under low serum condition. Inhibition of ERK-1/-2 activity dramatically enhanced differentiation as was evident from cellular morphology, expression of muscle differentiation specific marker proteins, suggesting that ERK-1/-2 activation may be inhibitory to initiation and progression of differentiation. In contrast, inhibition of p38 MAP kinase completely prevented differentiation; meaning p38 activation is required from the initiation till terminal differentiation of L6E9 cells. Moreover, inhibition of ERK-1/-2 activities enhanced the activation of p38 MAP kinase that resulted in enhancement of differentiation; whereas inhibition of p38 MAP kinase activity enhanced the ERK-1/-2 activities culminating in abrogation of differentiation. We conclude that ERK-1/-2 and p38 MAP kinase cascades oppositely regulate each other's function(s) thereby regulating L6E9 skeletal muscle differentiation.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号