首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
In Drosophila melanogaster, mutations in the gene drop-dead (drd) result in early adult lethality, with flies dying within 2 weeks of eclosion. Additional phenotypes include neurodegeneration, tracheal defects, starvation, reduced body mass, and female sterility. The cause of early lethality and the function of the drd protein remain unknown. In the current study, the temporal profiles of drd expression required for adult survival and body mass regulation were investigated. Knockdown of drd expression by UAS-RNAi transgenes and rescue of drd expression on a drd mutant background by a UAS-drd transgene were controlled with the Heat Shock Protein 70 (Hsp70)-Gal4 driver. Flies were heat-shocked at different stages of their lifecycle, and the survival and body mass of the resulting adult flies were assayed. Surprisingly, the adult lethal phenotype did not depend upon drd expression in the adult. Rather, expression of drd during the second half of metamorphosis was both necessary and sufficient to prevent rapid adult mortality. In contrast, the attainment of normal adult body mass required a different temporal pattern of drd expression. In this case, manipulation of drd expression solely during larval development or metamorphosis had no effect on body mass, while knockdown or rescue of drd expression during all of pre-adult (embryonic, larval, and pupal) development did significantly alter body mass. Together, these results indicate that the adult-lethal gene drd is required only during development. Furthermore, the mutant phenotypes of body mass and lifespan are separable phenotypes arising from an absence of drd expression at different developmental stages.  相似文献   

2.
3.
4.
Wang W  Cronmiller C  Brautigan DL 《Genetics》2008,179(4):1823-1833
Protein phosphatase-1 (PP1) is a major Ser/Thr phosphatase conserved among all eukaryotes, present as the essential GLC7 gene in yeast. Inhibitor-2 (I-2) is an ancient PP1 regulator, named GLC8 in yeast, but its in vivo function is unknown. Unlike mammals with multiple I-2 genes, in Drosophila there is a single I-2 gene, and here we describe its maternally derived expression and required function during embryogenesis. During oogenesis, germline expression of I-2 results in the accumulation of RNA and abundant protein in unfertilized eggs; in embryos, the endogenous I-2 protein concentrates around condensed chromosomes during mitosis and also surrounds interphase nuclei. An I-2 loss-of-function genotype is associated with a maternal-effect phenotype that results in drastically reduced progeny viability, as measured by reduced embryonic hatch rates and larval lethality. Embryos derived from I-2 mutant mothers show faulty chromosome segregation and loss of mitotic synchrony in cleavage-stage embryos, patchy loss of nuclei in syncytial blastoderms, and cuticular pattern defects in late-stage embryos. Transgenic expression of wild-type I-2 in mutant mothers gives dose-dependent rescue of the maternal effect on embryo hatch rate. We propose that I-2 is required for proper chromosome segregation during Drosophila embryogenesis through the coordinated regulation of PP1 and Aurora B.  相似文献   

5.
6.
7.
In Drosophila melanogaster, fluctuations in 20-hydroxyecdysone (ecdysone) titer coordinate gene expression, cell death, and morphogenesis during metamorphosis. Our previous studies have supported the hypothesis that betaFTZ-F1 (an orphan nuclear receptor) provides specific genes with the competence to be induced by ecdysone at the appropriate time, thus directing key developmental events at the prepupal-pupal transition. We are examining the role of betaFTZ-F1 in morphogenesis. We have made a detailed study of morphogenetic events during metamorphosis in control and betaFTZ-F1 mutant animals. We show that leg development in betaFTZ-F1 mutants proceeds normally until the prepupal-pupal transition, when final leg elongation is delayed by several hours and significantly reduced in the mutants. We also show that betaFTZ-F1 mutants fail to fully extend their wings and to shorten their bodies at the prepupal-pupal transition. We find that betaFTZ-F1 mutants are unable to properly perform the muscle contractions that drive these processes. Several defects can be rescued by subjecting the mutants to a drop in pressure during the normal time of the prepupal-pupal transition. Our findings indicate that betaFTZ-F1 directs the muscle contraction events that drive the major morphogenetic processes during the prepupal-pupal transition in Drosophila.  相似文献   

8.
Human checkpoint kinase 1 (Chk1) is an essential kinase required for cell cycle checkpoints and for coordination of DNA synthesis. To gain insight into the mechanisms by which Chk1 carries out these functions, we used mass spectrometry to identify previously uncharacterized interacting partners of Chk1. We describe a novel interaction between Chk1 and proliferating cell nuclear antigen (PCNA), an essential component of the replication machinery. Binding between Chk1 and PCNA was reduced in the presence of hydroxyurea, suggesting that the interaction is regulated by replication stress. A highly conserved PCNA-interacting protein (PIP) box motif was identified in Chk1. The intact PIP box is required for efficient DNA damage-induced phosphorylation and release of activated Chk1 from chromatin. We find that the PIP box of Chk1 is crucial for Chk1-mediated S-M and G(2)-M checkpoint responses. In addition, we show that mutations in the PIP box of Chk1 lead to decreased rates of replication fork progression and increased aberrant replication. These findings suggest an additional mechanism by which essential components of the DNA replication machinery interact with the replication checkpoint apparatus.  相似文献   

9.
10.
The interaction between the 911 complex, via Rad9A, and Claspin is required for activation of the Chk1-mediated checkpoint response, along with ATR, TopBP1, and the 911 clamp loader complex Rad17/RFC. Despite the importance of the Rad9A-Claspin interaction in the cell cycle, this interaction has yet to be characterized. In this work we show this interaction persists in a variety of different conditions. During the course of this study we also determined the nuclear localization of Rad9A affected the localization of the Claspin protein, leading us to the conclusion that Rad9A is able to affect Claspin cellular localization. This was verified experimentally using a Rad9A-null cell line and reconstitution of WT Rad9A. We also show that in mES cells the Rad9A paralog, Rad9B, is also capable of affecting Claspin localization. Together, these data suggest that Rad9 plays a role in locating Claspin to sites of DNA damage, facilitating its role during the Chk1-mediated checkpoint response. Since disruption of both Rad9A and Claspin has been shown to abolish Chk1 activation, we postulate that Rad9A-mediated Claspin localization is a vital step during checkpoint activation.  相似文献   

11.
The discovery that several inherited human diseases are caused by mtDNA depletion has led to an increased interest in the replication and maintenance of mtDNA. We have isolated a new mutant in the lopo (low power) gene from Drosophila melanogaster affecting the mitochondrial single-stranded DNA-binding protein (mtSSB), which is one of the key components in mtDNA replication and maintenance. lopo(1) mutants die late in the third instar before completion of metamorphosis because of a failure in cell proliferation. Molecular, histochemical, and physiological experiments show a drastic decrease in mtDNA content that is coupled with the loss of respiration in these mutants. However, the number and morphology of mitochondria are not greatly affected. Immunocytochemical analysis shows that mtSSB is expressed in all tissues but is highly enriched in proliferating tissues and in the developing oocyte. lopo(1) is the first mtSSB mutant in higher eukaryotes, and its analysis demonstrates the essential function of this gene in development, providing an excellent model to study mitochondrial biogenesis in animals.  相似文献   

12.
13.
Summary Drosophila melanogaster flies were transformed with a yp1-Adh fusion gene with 890 bp of yp1 5 flanking sequence. In an Adh - background these flies show a stage, tissue and sex-specific pattern of alcohol dehydrogenase (ADH) activity characteristic of yolk protein genes. ADH activity is not present in dsx D/dsx pseudomales indicating that this fragment contains sites where the dsx gene product exerts its effect. Transformed male flies do not exhibit ADH activity when injected with 20-hydroxyecdysone while synthesis of native yolk proteins is induced. Thus the hormone inducibility and sex regulation have been separated in this construct.  相似文献   

14.
Octopamine is a major monoamine in invertebrates and affects many physiological processes ranging from energy metabolism to complex behaviors. Octopamine binds to receptors located on various cell types and activates distinct signal transduction pathways to produce these diverse effects. We previously identified one of the Drosophila octopamine receptors named OAMB that produces increases in cAMP and intracellular Ca2+ upon ligand binding. It is expressed at high levels in the brain. To explore OAMB's physiological roles, we generated deletions in the OAMB locus. The resultant oamb mutants were viable without gross anatomical defects. The oamb females displayed normal courtship and copulation; however, they were impaired in ovulation with many mature eggs retained in their ovaries. RT-PCR, in situ hybridization, and expression of a reporter gene revealed that OAMB was also expressed in the thoracicoabdominal ganglion, the female reproductive system, and mature eggs in the ovary. Moreover, analysis of various alleles pinpointed the requirement for OAMB in the body, but not in the brain, for female fecundity. The novel expression pattern of OAMB and its genetic resource described in this study will help advance our understanding on how the neuromodulatory or endocrine system controls reproductive physiology and behavior.  相似文献   

15.
16.
Oh Y  Lee C  Baek K  Kim W  Yoon J  Han K  Cho N 《Molecules and cells》1999,9(6):673-677
Previously we showed that the 5'-flanking regions between -261 and -207 of the Drosophila melanogaster TBP (TATA box binding protein) gene is important for its expression. We further made serial deletion mutants in this region and analyzed their promoter activities using the transient transfection assay. We found that the 16 bp deletion from -261 to -245 greatly reduces the promoter activity of the Drosophila TBP gene. The 16 bp DNA element contains half of a 11 bp long palindromic sequence, CTTTT-GAAAAG. Disruption of the palindromic sequence by site-directed mutagenesis severely affected promoter activity. In addition, the electrophoretic mobility shift assay showed that the oligonucleotide containing the palindromic sequence can make specific DNA/protein complexes when it was mixed with the Drosophila nuclear extract, suggesting that it interacts with nuclear protein(s). Our data suggest that the palindromic sequence has a critical role in the expression of the Drosophila TBP gene.  相似文献   

17.
Cells can respond to reductions in oxygen (hypoxia) by metabolic adaptations, quiescence or cell death. The nuclear division cycles of syncytial stage Drosophila melanogaster embryos reversibly arrest upon hypoxia. We examined this rapid arrest in real time using a fusion of green fluorescent protein and histone 2A. In addition to an interphase arrest, mitosis was specifically blocked in metaphase, much like a checkpoint arrest. Nitric oxide, recently proposed as a hypoxia signal in Drosophila, induced a reversible arrest of the nuclear divisions comparable with that induced by hypoxia. Syncytial stage embryos die during prolonged hypoxia, whereas post-gastrulation embryos (cellularized) survive. We examined ATP levels and morphology of syncytial and cellularized embryos arrested by hypoxia, nitric oxide, or cyanide. Upon oxygen deprivation, the ATP levels declined only slightly in cellularized embryos and more substantially in syncytial embryos. Reversal of hypoxia restored ATP levels and relieved the cell cycle and developmental arrests. However, morphological abnormalities suggested that syncytial embryos suffered irreversible disruption of developmental programs. Our results suggest that nitric oxide plays a role in the response of the syncytial embryo to hypoxia but that it is not the sole mediator of these responses.  相似文献   

18.
Sanders C  Smith DP 《PloS one》2011,6(8):e24151
In animals, male fertility requires the successful development of motile sperm. During Drosophila melanogaster spermatogenesis, 64 interconnected spermatids descended from a single germline stem cell are resolved into motile sperm in a process termed individualization. Here we identify a putative double-stranded RNA binding protein LUMP that is required for male fertility. lump(1) mutants are male-sterile and lack motile sperm due to defects in sperm individualization. We show that one dsRNA binding domains (dsRBD) is essential for LUMP function in male fertility. These findings reveal LUMP is a novel factor required for late stages of male germline differentiation.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号