首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
In humans, plant cell wall polysaccharides represent an important source of dietary fibres that are digested by gut microorganisms. Despite the extensive degradation of xylan in the colon, the population structure and the taxonomy of the predominant bacteria involved in degradation of this polysaccharide have not been extensively explored. The objective of our study was to characterize the xylanolytic microbial community from human faeces, using xylan from different botanic origins. The xylanolytic population was enumerated at high level in all faecal samples studied. The predominant xylanolytic organisms further isolated (20 strains) were assigned to Roseburia and Bacteroides species. Some Bacteroides isolates corresponded to the two newly described species Bacteroides intestinalis and Bacteroides dorei. Other isolates were closely related to Bacteroides sp. nov., a cellulolytic bacterium recently isolated from human faeces. The remaining Bacteroides strains could be considered to belong to a new species of this genus. Roseburia isolates could be assigned to the species Roseburia intestinalis. The xylanase activity of the Bacteroides and Roseburia isolates was found to be higher than that of other gut xylanolytic species previously identified. Our results provide new insights to the diversity and activity of the human gut xylanolytic community. Four new xylan-degrading Bacteroides species were identified and the xylanolytic capacity of R. intestinalis was further shown.  相似文献   

2.
AimsZ: To characterize fibre degradation, colonization and fermentation, and xylanase activity of two xylanolytic bacteria Bacteroides xylanisolvens XB1AT and Roseburia intestinalis XB6B4 from the human colon. Methods and Results: The bacteria grew well on all the substrates chosen to represent dietary fibres: wheat and corn bran, pea, cabbage and leek fibres, and also on purified xylans. Roseburia intestinalis colonized the substrates more efficiently than Bact. xylanisolvens. For the two bacteria, 80–99% of the total xylanase activity was associated with the cells whatever the substrate and time of growth. Optimal specific activities of cells were obtained on oat spelt xylan; they were higher than those previously measured for xylanolytic bacteria from the human gut. Roseburia intestinalis produced high molecular mass xylanases (100–70 kDa), while Bact. xylanisolvens produced lower molecular mass enzymes, including a cell‐associated xylanase of 37 kDa. Conclusions: The two bacteria display very high xylanolytic activity on the different substrates. Differences were observed on substrate attachment and enzyme systems, suggesting that the two species occupy different niches within the gut microbiota. Significance and Impact of the Study: This study characterizes xylan degradation by two major species of the human intestine.  相似文献   

3.
The present work reports on autotrophic metabolism in four H2/CO2-utilizing acetogenic bacteria isolated from the human colon (two Clostridium species, one Streptococcus species, and Ruminococcus hydrogenotrophicus). H2/CO2-utilization by these human acetogenic strains occurred during both exponential and stationary phases of growth. Acetate was the major metabolite produced by all isolates following the stoichiometric equation of reductive acetogenesis. Furthermore, the ability of these acetogenic bacteria to incorporate 13CO2 into acetate in the presence of H2 in the gas phase demonstrated the utilization of the reductive pathway of acetate formation from a one-carbon compound. Energy conservation during the autotrophic metabolism in colonic acetogens might involve sodium- or proton-chemiosmotic mechanisms. A sodium-dependent ATP generation was only demonstrated in one Clostridium species, whereas sodium could be replaced by potassium in other strains. The minimal thresholds of hydrogen uptake were determined and varied from 1100 to 3680 ppm depending on the acetogenic strain. These values appeared higher than those measured for the colonic methanogen,Methanobrevibacter smithii.  相似文献   

4.
Filamentous fungi colonizing rice straw were collected from 11 different sites in Korea and were identified based on characterization of their morphology and molecular properties. The fungi were divided into 25 species belonging to 16 genera, including 14 ascomycetes, one zygomycete, and one basidiomycete. Fungal cellulolytic and xylanolytic enzymes were assessed through a two-step process, wherein highly active cellulase- and/or hemicellulaseproducing fungi were selected in a first screening step followed by a second step to isolate the best enzymeproducer. Twenty-five fungal species were first screened for the production of total cellulase (TC), endo-beta-1,4 glucanase (EG), and endo-beta-1,4 xylanase (XYL) using solid-state fermentation with rice straw as substrate. From this screening, six species, namely, Aspergillus niger KUC5183, A. ochraceus KUC5204, A. versicolor KUC5201, Mucor circinelloides KUC6014, Trichoderma harzianum 1 KUC5182, and an unknown basidiomycete species, KUC8721, were selected. These six species were then incubated in liquid Mandels' media containing cellulose, glucose, rice straw, or xylan as the sole carbon source and the activities of six different enzymes were measured. Enzyme production was highly influenced by media conditions and in some cases significantly increased. Through this screening process, Trichoderma harzianum 1 KUC5182 was selected as the best enzyme producer. Rice straw and xylan were good carbon sources for the screening of cellulolytic and xylanolytic enzymes.  相似文献   

5.
The presence of methanogens Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii increased the level of cellulose fermentation by 5 to 10% in cultures of several genera of anaerobic fungi. When Neocallimastix sp. strain L2 was grown in coculture with methanogens the rate of cellulose fermentation also increased relative to that for pure cultures of the fungus. Methanogens caused a shift in the fermentation products to more acetate and less lactate, succinate, and ethanol. Formate transfer in cocultures of anaerobic fungi and M. smithii did not result in further stimulation of cellulolysis above the level caused by H2 transfer. When Selenomonas ruminatium was used as a H2-consuming organism in coculture with Neocallimastix sp. strain L2, both the rate and level of cellulolysis increased. The observed influence of the presence of methanogens is interpreted to indicate a shift of electrons from the formation of electron sink carbon products to H2 via reduced pyridine nucleotides, favoring the production of additional acetate and probably ATP. It is not known how S. ruminantium exerts its influence. It might result from a lowered production of electron sink products by the fungus, from consumption of electron sink products or H2 by S. ruminantium, or from competition for free sugars which in pure culture could exert an inhibiting effect on cellulolysis.  相似文献   

6.
The presence of methanogens Methanobacterium arboriphilus, Methanobacterium bryantii, or Methanobrevibacter smithii increased the level of cellulose fermentation by 5 to 10% in cultures of several genera of anaerobic fungi. When Neocallimastix sp. strain L2 was grown in coculture with methanogens the rate of cellulose fermentation also increased relative to that for pure cultures of the fungus. Methanogens caused a shift in the fermentation products to more acetate and less lactate, succinate, and ethanol. Formate transfer in cocultures of anaerobic fungi and M. smithii did not result in further stimulation of cellulolysis above the level caused by H2 transfer. When Selenomonas ruminatium was used as a H2-consuming organism in coculture with Neocallimastix sp. strain L2, both the rate and level of cellulolysis increased. The observed influence of the presence of methanogens is interpreted to indicate a shift of electrons from the formation of electron sink carbon products to H2 via reduced pyridine nucleotides, favoring the production of additional acetate and probably ATP. It is not known how S. ruminantium exerts its influence. It might result from a lowered production of electron sink products by the fungus, from consumption of electron sink products or H2 by S. ruminantium, or from competition for free sugars which in pure culture could exert an inhibiting effect on cellulolysis.  相似文献   

7.
A Bacillus subtilis strain isolated from a hot-spring was shown to produce xylanolytic enzymes. Their associative/synergistic effect was studied using a culture medium with oat spelts xylan as xylanase inducer. Optimal xylanase production of about 12 U ml−1 was achieved at pH 6.0 and 50°C, within 18 h fermentation. At 50°C, xylanase productivity obtained after 11 h in shake-flasks, 96,000 U l−1 h−1, and in reactor, 104,000 U l−1 h−1 was similar. Increasing temperature to 55°C a higher productivity was obtained in the batch reactor 45,000 U l−1 h−1, compared to shake-flask fermentations, 12,000 U l−1 h−1. Optimal xylanolytic activity was reached at 60°C on phosphate buffer, at pH 6.0. The xylanase is thermostable, presenting full stability at 60°C during 3 h. Further increase in the temperature caused a correspondent decrease in the residual activity. At 90°C, 20% relative activity remains after 14 min. Under optimised fermentation conditions, no cellulolytic activity was detected on the extract. Protein disulphide reducing agents, such as DTT, enhanced xylanolytic activity about 2.5-fold. When is used xylan as substrate, xylanase production decreased as function of time in contrast, with trehalose as carbon source, xylanase production in maintained constant for at least 80 h fermentation.  相似文献   

8.
为提高微生物发酵玉米芯提取木聚糖的效率,本研究采用H2O2预处理结合微生物发酵的方法提取玉米芯中的木聚糖,并通过扫描电镜(SEM)从微观结构初步探讨了H2O2预处理提高微生物发酵提取玉米芯木聚糖的原因。其结果表明:利用4%H2O2预处理玉米芯1小时,木聚糖含量可达40. 21±0. 21 mg/g,较未处理组玉米芯中木聚糖含量提高了87. 72%;4%H2O2预处理结合微生物发酵玉米芯,可显著提高木聚糖得率,其含量可达52. 72 mg/g,较未经H2O2预处理组提高了186. 67%;进一步利用响应面法优化微生物发酵经H2O2预处理玉米芯提取木聚糖的工艺,得到了发酵最佳培养基组成为含水量50%、尿素添加量0. 25%、葡萄糖添加量0. 75%,此条件下木聚糖含量达70. 84 mg/g,较未发酵提高了249. 82%;SEM图像显示H2O2预处理使得玉米芯结构变得疏松,微生物发酵结合H2O2预处理后的玉米芯出现较大孔洞,结构变得更为疏松。因此,H2O2预处理可改善玉米芯结构,促进微生物发酵,提高玉米芯木聚糖的提取效率,为玉米芯木聚糖的高效开发利用提供了参考。  相似文献   

9.
Three different ruminal anaerobic fungi, Neocallimastix frontalis PNK2, Sphaeromonas communis B7, and Piromonas communis B19, were grown axenically or in coculture with Methanobrevibacter smithii on xylan. N. frontalis and S. communis in monoculture and coculture accumulated xylobiose, xylose, and arabinose in the growth medium; arabinose was not metabolized, but xylobiose and xylose were subsequently used. The transient accumulation of xylose was much less evident in cocultures. Both the rate and extent of xylan utilization were increased by coculturing, and metabolite profiles became acetogenic as a result of interspecies hydrogen transfer; more acetate and less lactate were formed, while formate and hydrogen did not accumulate. For each of the three fungi, there were marked increases in the specific activities of extracellular xylanase (up to fivefold), alpha-l-arabinofuranosidase (up to fivefold), and beta-d-xylosidase (up to sevenfold) upon coculturing. The stimulating effect on fungal enzymes from coculturing with M. smithii was independent of the growth substrate, and the magnitude of the stimulation varied according to the enzymes and the incubation time. For an N. frontalis-M. smithii coculture, the positive stimulation was maintained during an extended (18-day) incubation period, and this affected not only hemicellulolytic enzymes but also polysaccharidase and glycoside hydrolase enzymes that were not involved in xylan breakdown. The specific activity of cell-bound endopeptidase was not increased under the coculture conditions used in this study. The higher enzyme activities in cocultures are discussed in relation to catabolite repression.  相似文献   

10.
The cross-feeding of xyland hydrolysis products between the xylanolytic bacterium Butyrivibrio fibrisolvens H17c and the xylooligosaccharide-fermenting bacterium Selenomonas ruminantium GA192 was investigated. Cultures were grown anaerobically in complex medium containing oat spelt xylan, and the digestion of xylan and the generation and subsequent utilization of xylooligosaccharide intermediates were monitored over time. Monocultures of B. fibrisolvens rapidly degraded oat spelt xylan, and a pool of extracellular degradation intermediates composed of low-molecular-weight xylooligosaccharides (xylobiose through xylopentaose and larger, unidentified oligomers) accumulated in these cultures. The ability of S. ruminantium to utilize the products of xylanolysis by B. fibrisolvens was demonstrated by its ability to grow on xylan that had first been digested by the extracellular xylanolytic enzymes of B. fibrisolvens. Although enzymatic hydrolysis converted the xylan to soluble products, this alone was not sufficient to assure complete utilization by S. ruminantium, and considerable quantities of oligosaccharides remained following growth. Stable xylan-utilizing cocultures of S. ruminantium and B. fibrisolvens were established, and the utilization of xylan was monitored. Despite the presence of an oligosaccharide-fermenting organism, accumulations of acid-alcohol soluble products were still noted; however, the composition of carbohydrates present in these cultures differed from that seen when B. fibrisolvens was cultivated alone. Residual carbohydrates present at various times during growth were of higher average degree of polymerization in cocultures than in cultures of B. fibrisolvens alone. Structural characterization of these residual products may help define the limitations on the assimilation of xylooligosaccharides by ruminal bacteria.  相似文献   

11.
Xylanisamajorcomponentforminghemicelluloseandaccountsfor50%ofdryweightofherbaceousplants.Itssourcesareveryabundantintheworld.Xylanisfirstlyhydrolyzedintosmallmolecularxylose,andthenthexylosecanbeutilizedbymicrobesinmaterialcycle.Therearetwowaysforhydrol…  相似文献   

12.
13.
AIMS: A novel xylanolytic multienzyme complex of the aerobic thermophilic fungus Chaetomium sp. nov. MS-017 was produced on palm oil mill fibre (POMF) and partially characterized. METHODS AND RESULTS: The assay of the extracellular enzymes of Chaetomium sp. nov. MS-017 on POMF in solid-state fermentation revealed cellulolytic, pectinolytic and extremely high xylanolytic activities. The protein was purified by Sephadex G-200 column chromatography. The SDS-PAGE demonstrated that the purified protein is a complex with at least five xylanolytic, four cellulolytic and eight pectinolytic components. The characterization of the complex at various temperatures showed that the reactivity and stability of the complex are not lost up to 60 degrees C. In addition, the complex was very stable in a wide range of pH (3-9) and at high concentrations (10 mm) of cations and EDTA. The major products of xylan hydrolysis by the purified complex were determined to be xylobiose and xylotriose by thin-layer chromatography. CONCLUSION: Chaetomium sp. nov. MS-017 preferentially produces a xylanolytic multienzyme complex on POMF in solid-state fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: This is the first report on the xylanolytic multienzyme complex produced by an aerobic thermophilic fungus.  相似文献   

14.
Treatment with rumen fluid improves methane production from non-degradable lignocellulosic biomass during subsequent methane fermentation; however, the kinetics of xylanases during treatment with rumen fluid remain unclear. This study aimed to identify key xylanases contributing to xylan degradation and their individual activities during xylan treatment with bovine rumen microorganisms. Xylan was treated with bovine rumen fluid at 37°C for 48 h under anaerobic conditions. Total solids were degraded into volatile fatty acids and gases during the first 24 h. Zymography showed that xylanases of 24, 34, 85, 180, and 200 kDa were highly active during the first 24 h. Therefore, these xylanases are considered to be crucial for xylan degradation during treatment with rumen fluid. Metagenomic analysis revealed that the rumen microbial community’s structure and metabolic function temporally shifted during xylan biodegradation. Although statistical analyses did not reveal significantly positive correlations between xylanase activities and known xylanolytic bacterial genera, they positively correlated with protozoal (e.g., Entodinium, Diploplastron, and Eudiplodinium) and fungal (e.g., Neocallimastix, Orpinomyces, and Olpidium) genera and unclassified bacteria. Our findings suggest that rumen protozoa, fungi, and unclassified bacteria are associated with key xylanase activities, accelerating xylan biodegradation into volatile fatty acids and gases, during treatment of lignocellulosic biomass with rumen fluid.  相似文献   

15.
A culture filtrate of Bacillus sp. KT12 was used to prepare polyphenyl beta-oligoxylosides from xylan and polyphenols in a one-step reaction. One oligoxyloside transfer enzyme was purified from multiple xylanolytic enzymes in the culture filtrate. N-terminal amino acid sequence determination classified the enzyme as a glycosyl hydrolase family 11 (endo-xylanase). The xylanolytic enzyme activities could be markedly altered; its hydrolytic activity was almost entirely inhibited at acidic pH, whereas near constant transxylosylation activity was observed at pH 4-11. Further, metal ions activated transxylosylation and almost completely inhibited hydrolysis. The enzyme specifically induced a beta-xylosyl transfer reaction to acceptor molecules, such as divalent and trivalent phenolic hydroxyl groups, and displayed no activity toward alcoholic compounds. The Bacillus sp. KT12 xylanolytic enzyme was a suitable enzyme for the synthesis of polyphenyl beta-oligoxylosides.  相似文献   

16.
Tamarind kernel powder (TKP), a soluble agro-residue, was used to examine the production of both cellulolytic and xylanolytic enzymes in a submerged culture of Termitomyces clypeatus, an edible mushroom. Soluble TKP containing xyloglucan as the major polysaccharide induced all cellulolytic and xylanolytic enzymes, and enzyme production increased up to 3% (w/v) TKP with culture filtrate consisting of xylanase and CMCase at a ratio of 4: 1 app. Strong catabolic repression of enzyme production was also observed with the soluble substrate, although fed-batch addition of soluble substrate at late growth phase modified the enzyme kinetics by improving the yield by 30%. The results indicate that inducers were possibly released from TKP by cellulose and xylan fractions of the lignocellulosic polymer. Therefore, the present study reports the successful economic utilization of TKP, an abundantly available soluble agro-residue, for the production of both cellulolytic and xylanolytic enzymes in a single fermentation method.  相似文献   

17.
The thermotolerant yeast Hansenula polymorpha ferments glucose and xylose to ethanol at high temperatures. However, H. polymorpha cannot utilize starchy materials or xylans. Heterologous amylolytic and xylanolytic enzymes have to be expressed in this yeast to provide for utilization and growth on starch and xylan. Genes SWA2 and GAM1 from the yeast Schwanniomyces occidentalis, encoding α-amylase and glucoamylase, respectively, were expressed in H. polymorpha. The expression was achieved by integration of the SWA2 and GAM1 genes under the strong constitutive promoter of the H. polymorpha glyceraldehyde-3-phosphate dehydrogenase gene (HpGAP) into H. polymorpha genome. Resulting transformants acquired the ability to grow on a minimal medium containing soluble starch as a sole carbon source. Ethanol production at high-temperature fermentation from starch by the recombinant strains was up to 10 g/L. The XYN2 gene encoding endoxylanase of the fungus Trichoderma reseei was expressed in H. polymorpha. Co-expression of xlnD gene coding for β-xylosidase of the fungus Aspergillus niger and the XYN2 gene in H. polymorpha was achieved by integration of these genes under control of the HpGAP promoter. Resulting transformants were capable of growth and alcoholic fermentation on a minimal medium supplemented with birchwood xylan as a sole carbon source at 48 °C.  相似文献   

18.
Butyrivibrio sp. Mz 5 with a high xylanolytic activity was isolated. Four major xylanases were detected in the cell-associated fraction using the zymogram technique. The xylanolytic activity was inducible with the oat spelts xylan; two endoxylanases (51 and 145 kDa) were formed constitutively. The bulk of the xylanolytic activity was cell-bound and growth-phase dependent; the maximum activity in the cell-associated fraction was achieved after 16 h of incubation. The highest xylanolytic activity was determined in a medium with 0.5% oat spelts xylan. Under optimum conditions (the highest xylanolytic activity produced), the two cell-bound xylanases (51 and 58 kDa) were isolated by anion exchange chromatography on CIM DEAE 8 tubes attached to a MPLC system, and gel filtration.  相似文献   

19.
This is the first detailed report of xylanolytic activity in Thermus strains. Two highly thermophilic xylanolytic bacteria, very closely related to non-xylanolytic T. thermophilus strains, have been isolated from the hottest zones of compost piles. Strain X6 was investigated in more detail. The growth rate (optical density monitoring) on xylan was 0.404.h-1 at 75 degrees C. Maximal growth temperature was 81 degrees C. Xylanase activity was mainly cell-bound, but was solubilized into the medium by sonication. It was induced by xylan or xylose in the culture medium. The temperature and pH optima of the xylanases were determined to be around 100 degrees C and pH 6, respectively. Xylanase activity was fairly thermostable; only 39% of activity was lost after an incubation period of 48 h at 90 degrees C in the absence of substrate. Xylanolytic T. thermophilus strains could contribute to the degradation of hemicellulose during the thermogenic phase of industrial composting.  相似文献   

20.
Bats (Order Chiroptera) are a widely distributed group of mammals. Pteropus giganteus belongs to the Suborder Megachiroptera. This bat consumes fruits and leaves as their major food. Cellulose and xylan are the major composition of leaves. As they consume leaves in their diet, their digestive tract must contain cellulolytic and xylanolytic bacteria which help in the digestion of cellulose and xylan. The cellulolytic and xylanolytic bacteria were isolated and screened on Berg's agar containing cellulose and xylan. The bacteria isolated were characterized biochemically and found to be Proteus vulgaris, Proteus mirabilis, Citrobacter freundii, Serratia liquefaciens and Klebsiella oxytoca. These bacteria help in digestion of cellulose and xylan in the diet of the bat, P. giganteus. Here we show that leaves are also used as a carbohydrate source by these bats. An insectivorous bat, Hipposideros fulvus, was used as a control and does not possess cellulolytic and xylanolytic bacteria.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号