首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The maize p1 gene encodes a Myb-homologous regulator of red pigment biosynthesis. To investigate the tissue-specific regulation of the p1 gene, maize plants were transformed with constructs combining promoter and cDNA sequences of two alleles which differ in pigmentation patterns: P1-wr (white pericarp/red cob) and P1-rr (red pericarp/red cob). Surprisingly, all promoter/cDNA combinations produced transgenic plants with red pericarp and red cob (RR pattern), indicating that the P1-wr promoter and encoded protein can function in pericarp. Some of the RR patterned transgenic plants produced progeny plants with white pericarp and red cob (WR pattern), and this switch in tissue-specificity correlated with increased transgene methylation. A similar inverse correlation between pericarp pigmentation and DNA methylation was observed for certain natural p1 alleles, which have a gene structure characteristic of standard P1-wr alleles, but which confer red pericarp pigmentation and are consistently less methylated than standard P1-wr alleles. Although we cannot rule out the possible existence of tissue-specific regulatory elements within the p1 non-coding sequences or flanking regions, the data from transgenic and natural alleles suggest that the tissue-specific pigmentation pattern characteristic of the P1-wr phenotype is epigenetically controlled.  相似文献   

2.
X. Peng  S. M. Mount 《Genetics》1990,126(4):1061-1069
  相似文献   

3.
4.
5.
Inoculation of turnip crinkle virus (TCV) on the resistant Arabidopsis ecotype Dijon (Di-17) results in the development of a hypersensitive response (HR) on the inoculated leaves. To assess the role of the recently cloned HRT gene in conferring resistance, we monitored both HR and resistance (lack of viral spread to systemic tissues) in the progeny of a cross between resistant Di-17 and susceptible Columbia plants. As expected, HR development segregated as a dominant trait that corresponded with the presence of HRT. However, all of the F(1) plants and three-fourths of HR(+) F(2) plants were susceptible to the virus. These results suggest the presence of a second gene, termed RRT, that regulates resistance to TCV. The allele present in Di-17 appears to be recessive to the allele or alleles present in TCV-susceptible ecotypes. We also demonstrate that HR formation and TCV resistance are dependent on salicylic acid but not on ethylene or jasmonic acid. Furthermore, these phenomena are unaffected by mutations in NPR1. Thus, TCV resistance requires a yet undefined salicylic acid-dependent, NPR1-independent signaling pathway.  相似文献   

6.
7.
 Simple Sequence Repeat (SSR) allele sizing provides a useful tool for genotype identification, pedigree analysis, and for estimating genetic distance between organisms. Soybean [Glycine max (L.) Merr.] cultivars are identified for Plant Variety Protection (PVP) purposes by standard pigmentation and morphological traits. However, many commercial soybeans arise from a limited number of elite lines and are often indistinguishable based on these traits. A system based on SSR markers would provide unique DNA profiles of cultivars. Fluorescent labeling of alleles combined with automated sizing with internal size standards in each gel lane was used as an alternative to standard [32P] labeling to assess genetic variability in soybean. Allelic frequencies at 20 SSR loci were determined in 35 soybean genotypes that account for greater than 95% of the alleles in North American soybean cultivars based upon pedigree analysis. An average of 10.1 alleles per locus (range: 5–17), with a mean gene diversity of 0.80 (range: 0.50 to 0.87) were observed at the 20 SSR loci. The 20 loci successfully distinguished modern soybean cultivars that are identical for morphological and pigmentation traits, as well as 7 soybean genotypes reported to be indistinguishable using 17 RFLP probes. Pedigrees of 7 cultivars were studied to estimate stability of SSRs in soybean across generations. Of the 7 pedigrees 6 had one locus in the progeny with an allele(s) that was not present in either parent. These new alleles are most likely the result of mutation. The mutation rate of SSR alleles in soybean was similar to that reported in humans. To avoid difficulty associated with mutation, DNA fingerprint data should be determined from the bulk of 30-50 plants of a cultivar. Received: 24 March 1997 / Accepted: 4 April 1997  相似文献   

8.
J J English  J D Jones 《Genetics》1998,148(1):457-469
Progeny of tobacco line 2853.6, which carries a streptomycin phosphotransferase (SPT) gene interrupted by the maize element Activator (Ac), were selected for streptomycin resistance (Spr) because of germinal Ac excision. Some events gave rise to Spr alleles that were unstable and exhibited a mottled phenotype on streptomycin-containing medium due to somatic loss of SPT function. This instability was most pronounced in one particular line, Spr12F. Other Spr alleles rarely exhibited silencing of SPT. Streptomycin-sensitive, homozygous Spr12F plants were recovered, and crosses were performed with other, more stable Spr lines. A high proportion of the resulting heterozygous progeny were silenced for SPT expression. The silenced state was heritable even after the Spr12F allele segregated away. No correlation could be made between silencing and methylation of the SPTgene. Structural analysis of allele Spr12F showed that the SPT gene from which Ac had excised was flanked by direct repeats of Ac. A search was carried out among 110 additional Spr alleles for new independent unstable alleles, and four were identified. All of these alleles also carried an SPT gene flanked by direct repeats of Ac. Thus, there is a strong correlation between this structure and instability of SPT expression.  相似文献   

9.
Robbins ML  Sekhon RS  Meeley R  Chopra S 《Genetics》2008,178(4):1859-1874
The molecular basis of tissue-specific pigmentation of maize carrying a tandemly repeated multicopy allele of pericarp color1 (p1) was examined using Mutator (Mu) transposon-mediated mutagenesis. The P1-wr allele conditions a white or colorless pericarp and a red cob glumes phenotype. However, a Mu-insertion allele, designated as P1-wr-mum6, displayed an altered phenotype that was first noted as occasional red stripes on pericarp tissue. This gain-of-pericarp-pigmentation phenotype was heritable, yielding families that displayed variable penetrance and expressivity. In one fully penetrant family, deep red pericarp pigmentation was observed. Several reports on Mu suppressible alleles have shown that Mu transposons can affect gene expression by mechanisms that depend on transposase activity. Conversely, the P1-wr-mum6 phenotype is not affected by transposase activity. The increased pigmentation was associated with elevated mRNA expression of P1-wr-mum6 copy (or copies) that was uninterrupted by the transposons. Genomic bisulfite sequencing analysis showed that the elevated expression was associated with hypomethylation of a floral-specific enhancer that is approximately 4.7 kb upstream of the Mu1 insertion site and may be proximal to an adjacent repeated copy. We propose that the Mu1 insertion interferes with the DNA methylation and related chromatin packaging of P1-wr, thereby inducing expression from gene copy (or copies) that is otherwise suppressed.  相似文献   

10.
Todd JJ  Vodkin LO 《The Plant cell》1996,8(4):687-699
Seed coat color in soybean is determined by four alleles of the classically defined / (inhibitor) locus that controls the presence or absence as well as the spatial distribution of anthocyanin pigments in the seed coat. By analyzing spontaneous mutations of the / locus, we demonstrated that the / locus is a region of chalcone synthase (CHS) gene duplications. Paradoxically, deletions of CHS gene sequences allow higher levels of CHS mRNAs and restore pigmentation to the seed coat. The unusual nature of the / locus suggests that its dominant alleles may represent naturally occurring examples of homology-dependent gene silencing and that the spontaneous deletions erase the gene-silencing phenomena. Specifically, mutations from the dominant ii allele (yellow seed coats with pigmented hila) to the recessive i allele (fully pigmented) can be associated with the absence of a 2.3-kb Hindlll fragment that carries CHS4, a member of the multigene CHS family. Seven independent mutations exhibit deletions in the CHS4 promoter region. The dominant / allele (yellow seed coats) exhibits an extra 12.1-kb Hindlll fragment that hybridizes with both the CHS coding region and CHS1 promoter-specific probes. Mutations of the dominant / allele to the recessive i allele (pigmented seed coats) give rise to 10.4- or 9.6-kb Hindlll CHS fragments that have lost the duplicated CHS1 promoter. Finally, gene expression analysis demonstrated that heterozygous plants (I/i) with yellow seed coats have reduced mRNA levels, indicating that the 12.1-kb Hindlll CHS fragment associated with the dominant / allele inhibits pigmentation in a trans-dominant manner. Moreover, CHS gene-specific expression in seed coats shows that multiple CHS genes are expressed in seed coats.  相似文献   

11.
12.
A Petunia hybrida inbred line (W 28) has white flowers with red spots on the corolla. These spots are the result of back mutations of an unstable allele of the gene Anl for anthocyanin synthesis. Among the progeny of a population of selfed plants a primary trisomic with red-spotted white flowers was found. The reversion frequency was more than twice as high as compared with disomic plants of the same family.It was found that the chromosome in triplicate was not the chromosome on which the gene Anl is localized. It can be concluded that there is an independently segregating factor which influences the frequency of back mutations of the Anl locus. Twin spots were found among the flowers of the trisomic. They consisted of two adjacent sectors, one with a spot frequency equal to that of the flowers of disomic plants, and the other with a spot frequency more than twice as high as that of the trisomic. Probably an irregular distribution of the extra chromosome resulted in one sector with the normal diploid number of chromosomes, and an adjacent sector with two extra chromosomes. The reversion frequencies in the sector suggest that the factor which affects the reversion frequency of the unstable alleles of Anl exhibits a dosage effect.  相似文献   

13.
The extent of imprinting at R-r, frequency of paramutation at B-Intense and Pl, and epigenetic silencing of Mu transposons were evaluated in the W23 and A188 inbred lines of maize. All types of epigenetic phenomena affecting these loci of the anthocyanin pathway occurred more frequently in the W23 inbred line. Absence of down-regulation was dominant in F1 hybrid progeny. Identical alleles programme lower anthocyanin accumulation in A188 than in W23, and A188 plants develop more rapidly than W23. The possibilities that specific genetic factors, intrinsic gene expression levels and/or the rapidity of the life cycle modulate epigenetic gene controls are discussed.  相似文献   

14.
Dominant white, Dun, and Smoky are alleles at the Dominant white locus, which is one of the major loci affecting plumage color in the domestic chicken. Both Dominant white and Dun inhibit the expression of black eumelanin. Smoky arose in a White Leghorn homozygous for Dominant white and partially restores pigmentation. PMEL17 encodes a melanocyte-specific protein and was identified as a positional candidate gene due to its role in the development of eumelanosomes. Linkage analysis of PMEL17 and Dominant white using a red jungle fowl/White Leghorn intercross revealed no recombination between these loci. Sequence analysis showed that the Dominant white allele was exclusively associated with a 9-bp insertion in exon 10, leading to an insertion of three amino acids in the PMEL17 transmembrane region. Similarly, a deletion of five amino acids in the transmembrane region occurs in the protein encoded by Dun. The Smoky allele shared the 9-bp insertion in exon 10 with Dominant white, as expected from its origin, but also had a deletion of 12 nucleotides in exon 6, eliminating four amino acids from the mature protein. These mutations are, together with the recessive silver mutation in the mouse, the only PMEL17 mutations with phenotypic effects that have been described so far in any species.  相似文献   

15.
16.
SR proteins are essential for pre-mRNA splicing in vitro, act early in the splicing pathway, and can influence alternative splice site choice. Here we describe the isolation of both dominant and loss-of-function alleles of B52, the gene for a Drosophila SR protein. The allele B52ED was identified as a dominant second-site enhancer of white-apricot (wa), a retrotransposon insertion in the second intron of the eye pigmentation gene white with a complex RNA-processing defect. B52ED also exaggerates the mutant phenotype of a distinct white allele carrying a 5' splice site mutation (wDR18), and alters the pattern of sex-specific splicing at doublesex under sensitized conditions, so that the male-specific splice is favored. In addition to being a dominant enhancer of these RNA-processing defects, B52ED is a recessive lethal allele that fails to complement other lethal alleles of B52. Comparison of B52ED with the B52+ allele from which it was derived revealed a single change in a conserved amino acid in the beta 4 strand of the first RNA-binding domain of B52, which suggests that altered RNA binding is responsible for the dominant phenotype. Reversion of the B52ED dominant allele with X rays led to the isolation of a B52 null allele. Together, these results indicate a critical role for the SR protein B52 in pre-mRNA splicing in vivo.  相似文献   

17.
18.
Previously we described the dose-response relationship for X-ray-induced mutation of the two homologous alleles of the thymidine kinase (tk) gene in a human lymphoblastoid cell line (Amundson and Liber, 1991). The two alleles were differentially mutable by X-rays, with one allele 6-10 times more mutable than the other. This difference was shown to be due to the virtual absence of the class of slow growth mutants from one allele. In the present report, restriction fragment length polymorphism (RFLP) analyses of informative markers along chromosome 17 have been used to delineate a region of chromosome 17 in which heterozygosity is lost with relatively high frequency among slow growth TK- mutants from the more mutable allele. However, loss of heterozygosity of this region has never been observed in normal growth mutants obtained from the more mutable allele, or in TK- mutants from the other, less mutable, allele. This may indicate the presence of a heterozygous essential gene on chromosome 17 distal to TK1.  相似文献   

19.
20.
Virginia Walbot 《Genetics》1986,114(4):1293-1312
Mutator lines of maize were originally defined by their high forward mutation rate, now known to be caused by the transposition of numerous Mu elements. A high frequency of somatic instability, seen as a fine purple spotting pattern on the aleurone tissue, is characteristic of Mu-induced mutable alleles of genes of the anthocyanin pathway. Loss of such somatic instability has been correlated with the de novo, specific modification of Mu element DNA. In this report the presence or loss of somatic instability at the bz2-mu1 allele has been monitored to investigate the inheritance of the Mutator phenomenon. The active state is labile and may become weakly active (low fraction of spotted kernel progeny) or totally inactive (no spotted kernel progeny) during either outcrossing to non-Mutator lines or on self-pollination. In contrast, the inactive state is relatively permanent with rare reactivation in subsequent crosses to non-Mutator lines. Cryptic bz2-mu1 alleles in weakly active lines can be efficiently reactivated to somatic instability when crossed with an active line. However, in reciprocal crosses of active and totally inactive individuals, strong maternal effects were observed on the inactivation of a somatically unstable bz2-mu1 allele and on the reactivation of cryptic bz2-mu1 alleles. In general, the activity state of the female parent determines the mutability of the progeny.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号