首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Vpr, an accessory gene of HIV-1, induces cell cycle abnormality with accumulation at G2/M phase and increased ploidy. Since abnormality of mitotic checkpoint control provides a molecular basis of genomic instability, we studied the effects of Vpr on genetic integrity using a stable clone, named MIT-23, in which Vpr expression is controlled by the tetracycline-responsive promoter. Treatment of MIT-23 cells with doxycycline (DOX) induced Vpr expression with a giant multinuclear cell formation. Increased micronuclei (MIN) formation was also detected in these cells. Abolishment of Vpr expression by DOX removal induced numerous asynchronous cytokinesis in the multinuclear cells with leaving MIN in cytoplasm, suggesting that the transient Vpr expression could cause genetic unbalance. Consistent with this expectation, MIT-23 cells, originally pseudodiploid cells, became aneuploid after repeated expression of Vpr. Experiments using deletion mutants of Vpr revealed that the domain inducing MIN formation as well as multinucleation was located in the carboxy-terminal region of Vpr protein. These results suggest that Vpr induces genomic instability, implicating the possible role in the development of AIDS-related malignancies.  相似文献   

2.
3.
Hepatitis B virus (HBV) includes an X gene (HBx gene) that plays a critical role in liver carcinogenesis. Because centrosome abnormalities are associated with genomic instability in most human cancer cells, we examined the effect of HBx on centrosomes. We found that HBx induced supernumerary centrosomes and multipolar spindles. This effect was independent of mutations in the p21 gene. Furthermore, the ability of HBV to induce supernumerary centrosomes was dependent on the presence of physiological HBx expression. We recently showed that HBx induces cytoplasmic sequestration of Crm1, a nuclear export receptor that binds to Ran GTPase, thereby inducing nuclear localization of NF-kappaB. Consistently, supernumerary centrosomes were observed in cells treated with a Crm1-specific inhibitor but not with an HBx mutant that lacked the ability to sequester Crm1 in the cytoplasm. Moreover, a fraction of Crm1 was found to be localized at the centrosomes. Immunocytochemical and ultrastructural examination of these supernumerary centrosomes revealed that inactivation of Crm1 was associated with abnormal centrioles. The presence of more than two centrosomes led to an increased frequency of defective mitoses and chromosome transmission errors. Based on this evidence, we suggest that Crm1 is actively involved in maintaining centrosome integrity and that HBx disrupts this process by inactivating Crm1 and thus contributes to HBV-mediated carcinogenesis.  相似文献   

4.
Human immunodeficiency virus type 1 (HIV-1) Vpr is a 15-kDa accessory protein that contributes to several steps in the viral replication cycle and promotes virus-associated pathology. Previous studies demonstrated that Vpr inhibits G2/M cell cycle progression in both human cells and in the fission yeast Schizosaccharomyces pombe. Here, we report that, upon induction of vpr expression, fission yeast exhibited numerous defects in the assembly and function of the mitotic spindle. In particular, two spindle pole body proteins, sad1p and the polo kinase plo1p, were delocalized in vpr-expressing yeast cells, suggesting that spindle pole body integrity was perturbed. In addition, nuclear envelope structure, contractile actin ring formation, and cytokinesis were also disrupted. Similar Vpr-induced defects in mitosis and cytokinesis were observed in human cells, including aberrant mitotic spindles, multiple centrosomes, and multinucleate cells. These defects in cell division and centrosomes might account for some of the pathological effects associated with HIV-1 infection.  相似文献   

5.
6.
The human immunodeficiency virus type 1 (HIV-1) vpr gene is an evolutionarily conserved gene among the primate lentiviruses HIV-1, HIV-2, and simian immunodeficiency viruses. One of the unique functions attributed to the vpr gene product is the arrest of cells in the G2 phase of the cell cycle. Here we demonstrate that Vpr interacts physically with HHR23A, one member of an evolutionarily conserved gene family involved in nucleotide excision repair. Interaction of Vpr with HHR23A was initially identified through a yeast two-hybrid screen and was confirmed by the demonstration of direct binding between bacterially expressed recombinant and transiently expressed or chemically synthesized protein products. Visualization of HHR23A and Vpr by indirect immunofluorescence and confocal microscopy indicates that the two proteins colocalize at or about the nuclear membrane. We also map the Vpr-binding domain in HHR23A to a C-terminal 45-amino-acid region of the protein previously shown to have homology to members of the ubiquitination pathway. Overexpression of HHR23A and a truncated derivative which includes the Vpr-binding domain results in a partial alleviation of the G2 arrest induced by Vpr, suggesting that the interaction between Vpr and HHR23A is critical for cell cycle arrest induced by Vpr. These results provide further support for the hypothesis that Vpr interferes with the normal function of a protein or proteins involved in the DNA repair process and, thus, in the transmission of signals that allow cells to transit from the G2 to the M phase of the cell cycle.  相似文献   

7.
Vpr, an accessory gene product of human immunodeficiency virus type 1 (HIV-1), affects both viral and cellular proliferation by mediating long terminal repeat activation, cell cycle arrest at the G2 phase, and apoptosis. We previously found that Vpr plays a novel role as a regulator of pre-mRNA splicing both in vivo and in vitro. However, the cellular target of Vpr, as well as the mechanism of cellular pre-mRNA splicing inhibition by Vpr, is unknown. Here, we show clearly that Vpr inhibits the splicing of cellular pre-mRNA, such as beta-globin pre-mRNA and immunoglobulin (Ig) M pre-mRNA and that the third alpha-helical domain and arginine-rich region are important its ability to inhibit splicing. Additionally, using mutants with specific substitutions in two domains of Vpr, we demonstrated that the interaction between Vpr and SAP145, an essential splicing factor, was indispensable for splicing inhibition. Finally, co-immunoprecipitation and in vitro competitive binding assays indicated that Vpr associates with SAP145 and interferes with SAP145-SAP49 complex formation. Thus, these results suggest that cellular expression of Vpr may block spliceosome assembly by interfering with the function of the SAP145-SAP49 complex in host cells.  相似文献   

8.
Y Zhao  J Cao  M R O'Gorman  M Yu    R Yogev 《Journal of virology》1996,70(9):5821-5826
The human immunodeficiency virus type 1 (HIV-1) Vpr protein affects cell morphology and prevents proliferation of human cells by induction of cell cycle G2 arrest. In this study, we used the fission yeast Schizosaccharomyces pombe as a model system to investigate the cellular effects of HIV-1 vpr gene expression. The vpr gene was cloned into an inducible fission yeast gene expression vector and expressed in wild-type S. pombe cells, and using these cells, we were able to demonstrate the specific Vpr-induced effects by induction and suppression of vpr gene expression. Induction of HIV-1 vpr gene expression affected S. pombe at the colonial, cellular, and molecular levels. Specifically, Vpr induced small-colony formation, polymorphic cells, growth delay, and cell cycle G2 arrest. Additionally, Vpr-induced G2 arrest appeared to be independent of cell size and morphological changes. The cell cycle G2 arrest correlated with increased phosphorylation of p34cdc2, suggesting negative regulation of mitosis by HIV-1 Vpr. Treatment of Vpr-induced cell with a protein phosphatase inhibitor, okadaic acid, transiently suppressed cell cycle arrest and morphological changes. This observation implicates possible involvement of protein phosphatase(s) in the effects of Vpr. Together, these data showed that the HIV-1 Vpr-induced cellular changes in S. pombe are similar to those observed in human cells. Therefore, the S. pombe system is suited for further investigation of the HIV-1 vpr gene functions.  相似文献   

9.
The human immunodeficiency virus type 1 (HIV-1) accessory protein Vpr induces cell cycle arrest in the G2 phase of the cell cycle followed by apoptosis. The mechanism of the arrest is unknown but the arrest is believed to facilitate viral replication. In the present study, we have established cell lines that allow conditional expression of Vpr, and have examined the mechanism of cell death following Vpr expression. We found that cells expressing Vpr enter M phase after long G2 arrest but formed aberrant multipolar spindles that were incapable of completing karyokinesis or cytokinesis. This abnormality provided the basis for apoptosis, which always followed in these cells. The multipolar spindles formed in response to abnormal centrosomal duplication that occurred during the G2 arrest but did not occur in cells arrested in G2 by irradiation. Thus, the expression of Vpr appears to be responsible for abnormal centrosome duplication, which in turn contributes in part to the rapid cell death following HIV-1 infection.  相似文献   

10.
11.
Prior work has implicated viral protein R (Vpr) in the arrest of human immunodeficiency virus type 1 (HIV-1)-infected cells in the G2 phase of the cell cycle, associated with increased viral replication and host cell apoptosis. We and others have recently shown that virion infectivity factor (Vif ) also plays a role in the G2 arrest of HIV-1-infected cells. Here, we demonstrate that, paradoxically, at early time points postinfection, Vif expression blocks Vpr-mediated G2 arrest, while deletion of Vif from the HIV-1 genome leads to a marked increase in G2 arrest of infected CD4 T-cells. Consistent with this increased G2 arrest, T-cells infected with Vif-deleted HIV-1 express higher levels of Vpr protein than cells infected with wild-type virus. Further, expression of exogenous Vif inhibits the expression of Vpr, associated with a decrease in G2 arrest of both infected and transfected cells. Treatment with the proteasome inhibitor MG132 increases Vpr protein expression and G2 arrest in wild-type, but not Vif-deleted, NL4-3-infected cells, and in cells cotransfected with Vif and Vpr. In addition, Vpr coimmunoprecipitates with Vif in cotransfected cells in the presence of MG132. This suggests that inhibition of Vpr by Vif is mediated at least in part by proteasomal degradation, similar to Vif-induced degradation of APOBEC3G. Together, these data show that Vif mediates the degradation of Vpr and modulates Vpr-induced G2 arrest in HIV-1-infected T-cells.  相似文献   

12.
Vpr, one of the accessory gene products of human immunodeficiency virus type 1 (HIV-1), affects aspects of both viral and cellular proliferation, being involved in long terminal repeat (LTR) activation, arrest of the cell cycle at the G2 phase, and apoptosis. We have discovered a novel role for Vpr as a regulator of the splicing of pre-mRNA both in vivo and in vitro. We found, by RT-PCR and RNase protection analysis, that Vpr caused the accumulation of incompletely spliced forms of alpha-globin 2 and beta-globin pre-mRNAs in cells that had been transiently transfected with a Vpr expression vector. We postulated that this novel effect of Vpr might occur via a pathway that is distinct from arrest of the cell cycle at G2. By analyzing splicing reactions in vitro, we showed that Vpr inhibited the splicing of beta-globin pre-mRNA in vitro. The splicing of intron 1 of alpha-globin 2 pre-mRNA was modestly inhibited by Vpr but the splicing of intron 2 was unaffected. Interestingly, an experimental infection system which utilizes high-titered HIV-1/vesticular stomatitis virus G protein showed that Vpr expressed from an HIV-1 provirus was sufficient to accumulate endogenous alpha-globin 2 pre-mRNA. Thus, it is likely that Vpr contributes to selective inhibition of the splicing of cellular pre-mRNA.  相似文献   

13.
In this study we investigated the effects of Vpr during human immunodeficiency virus (HIV) infection of proliferating Jurkat T cells by using a vesicular stomatitis virus envelope G glycoprotein pseudotyped HIV superinfection system. We observe that the expression of Vpr results in a severe reduction in the life span of HIV type 1 (HIV-1)-infected dividing T cells in culture. In agreement with a recent report (S. A. Stewart, B. Poon, J. B. M. Jowett, and I. S. Chen, J. Virol. 71:5579–5592, 1997), we show that events characteristic of apoptotic cell death are involved in the Vpr-mediated cytopathic effects. Our results also show that infection with viruses expressing the wild-type vpr gene results in an increase in viral gene expression and production. Interestingly, the effects of Vpr on cell viability and on viral gene expression both correlate with the ability of the protein to induce a cell cycle arrest in the G2/M phase. Mutagenesis analyses show that the C terminus of Vpr is essential for these biological activities. Although the role of Vpr is currently associated with the infection of nondividing cells, our results suggest that Vpr can also directly increase viral replication in vivo in infected dividing T cells. Furthermore, these in vitro observations suggest that Vpr-mediated cytotoxic effects could contribute to the CD4+ depletion associated with AIDS progression.  相似文献   

14.
We have previously shown that expression of HIV-1 vpr in yeast results in cell growth arrest and structural defects, and identified a C-terminal domain of Vpr as being responsible for these effects in yeast.1 In this report we show that recombinant Vpr and C-terminal peptides of Vpr containing the conserved sequence HFRIGCRHSRIG caused permeabilization of CD4+ T lymphocytes, a dramatic reduction of mitochondrial membrane potential and finally cell death. Vpr and Vpr peptides containing the conserved sequence rapidly penetrated cells, co-localized with the DNA, and caused increased granularity and formation of dense apoptotic bodies. The above results suggest that Vpr treated cells undergo apoptosis and this was confirmed by demonstration of DNA fragmentation by the highly sensitive TUNEL assay. Our results, together with the demonstration of extracellular Vpr in HIV infected individuals,2,3 suggest the possibility that extracellular Vpr could contribute to the apoptotic death and depletion of bystander cells in lymphoid tissues4,5 during HIV infection.  相似文献   

15.
16.
Human immunodeficiency virus type 1 protein R (HIV-1 Vpr) promotes nuclear entry of viral nucleic acids in nondividing cells, causes G(2) cell cycle arrest and is involved in cellular differentiation and cell death. Vpr subcellular localization is as variable as its functions. It is known, that consistent with its role in nuclear transport, Vpr localizes to the nuclear envelope of human cells. Further, a reported ion channel activity of Vpr is clearly dependent on its localization in or at membranes. We focused our structural studies on the secondary structure of a peptide consisting of residues 34-51 of HIV-1 Vpr. This part of Vpr plays an important role in Vpr oligomerization, contributes to cell cycle arrest activity, and is essential for virion incorporation and binding to HHR23A, a protein involved in DNA repair. Employing NMR spectroscopy we found this part of Vpr to be almost completely alpha helical in the presence of micelles, as well as in trifluoroethanol containing and methanol/chloroform solvent. Our results provide structural data suggesting residues 34-51 of Vpr to contain an amphipathic, leucine-zipper-like alpha helix, which serves as a basis for oligomerization of Vpr and its interactions with cellular and viral factors involved in subcellular localization and virion incorporation of Vpr.  相似文献   

17.
HIV-1 viral protein R (Vpr) is one of the human immunodeficiency virus type 1 encoded proteins that have important roles in viral pathogenesis. However, no clinical drug for AIDS therapy that targets Vpr has been developed. Here, we have established a screening system to isolate Vpr inhibitors using budding yeast cells. We purified a Vpr inhibitory compound from fungal metabolites and identified it as fumagillin, a chemical already known to be a potent inhibitor of angiogenesis. Fumagillin not only reversed the growth inhibitory activity of Vpr in yeast and human cells, but also inhibited Vpr-dependent viral gene expression upon the infection of human macrophages.  相似文献   

18.
During prometaphase, dense microtubule nucleation sites at centrosomes form robust spindles that align?chromosomes promptly. Failure of centrosome maturation leaves chromosomes scattered, as seen routinely in cancer cells, including myelodysplastic syndrome (MDS). We previously reported that the Miki (LOC253012) gene is frequently deleted in MDS?patients, and that low levels of Miki are associated with abnormal mitosis. Here we demonstrate that Miki localizes to the Golgi apparatus and is poly(ADP-ribosyl)ated by tankyrase-1 during late G2 and prophase. PARsylated Miki then translocates to mitotic centrosomes and anchors CG-NAP, a large scaffold protein of the γ-tubulin ring complex. Due to?impairment of microtubule aster formation, cells in which tankyrase-1, Miki, or CG-NAP expression is downregulated all show prometaphase disturbances, including scattered and lagging chromosomes. Our data suggest that PARsylation of Miki by tankyrase-1 is a key initial event promoting prometaphase.  相似文献   

19.
IL-23 is a heterodimeric cytokine comprising a p19 subunit associated with the IL-12/23p40 subunit. Like IL-12, IL-23 is expressed predominantly by activated dendritic cells (DCs) and phagocytic cells, and both cytokines induce IFN-gamma secretion by T cells. The induction of experimental autoimmune encephalitis, the animal model of multiple sclerosis (MS), occurs in mice lacking IL-12, but not in mice with targeted disruption of IL-23 or both IL-12 and IL-23. Thus, IL-23 expression in DCs may play an important role in the pathogenesis of human autoimmune diseases such as MS. We quantified the expression of IL-23 in monocyte-derived DCs in MS patients and healthy donors and found that DCs from MS patients secrete elevated amounts of IL-23 and express increased levels of IL-23p19 mRNA. Consistent with this abnormality, we found increased IL-17 production by T cells from MS patients. We then transfected monocyte-derived DCs from healthy donors with antisense oligonucleotides specific for the IL-23p19 and IL-12p35 genes and found potent suppression of gene expression and blockade of bioactive IL-23 and IL-12 production without affecting cellular viability or DCs maturation. Inhibition of IL-23 and IL-12 was associated with increased IL-10 and decreased TNF-alpha production. Furthermore, transfected DCs were poor allostimulators in the MLR. Our results demonstrate that an abnormal Th1 bias in DCs from MS patients related to IL-23 exists, and that antisense oligonucleotides specific to IL-23 can be used for immune modulation by targeting DC gene expression.  相似文献   

20.
Monocytes/macrophages are major targets of human immunodeficiency virus type 1 (HIV-1) infection. The viral preintegration complex (PIC) of HIV-1 enters the nuclei of monocyte-derived macrophages, but very little PIC migrates into the nuclei of immature monocytes. Vpr, one of the accessory gene products of HIV-1, is essential for the nuclear import of PIC in these cells, although the role of Vpr in the entry mechanism of PIC remains to be clarified. We have shown previously that Vpr is targeted to the nuclear envelope and then transported into the nucleus by importin alpha alone, in an importin beta-independent manner. Here we demonstrate that the nuclear import of Vpr is strongly promoted by the addition of cytoplasmic extract from macrophages but not of that from monocytes and that the nuclear import activity is lost with immunodepletion of importin alpha from the cytoplasmic extract. Immunoblot analysis and real-time PCR demonstrate that immature monocytes express importin alpha at low levels, whereas the expression of three major importin alpha isoforms markedly increases upon their differentiation into macrophages, indicating that the expression of importin alpha is required for nuclear import of Vpr. Furthermore, interaction between importin alpha and the N-terminal alpha-helical domain of Vpr is indispensable, not only for the nuclear import of Vpr but also for HIV-1 replication in macrophages. This study suggests the possibility that the binding of Vpr to importin alpha, preceding a novel nuclear import process, is a potential target for therapeutic intervention.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号