首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
In addition to the canonical right-handed double helix, DNA molecule can adopt several other non-B DNA structures. Readily formed in the genome at specific DNA repetitive sequences, these secondary conformations present a distinctive challenge for progression of DNA replication forks. Impeding normal DNA synthesis, cruciforms, hairpins, H DNA, Z DNA and G4 DNA considerably impact the genome stability and in some instances play a causal role in disease development. Along with previously discovered dedicated DNA helicases, the specialized DNA polymerases emerge as major actors performing DNA synthesis through these distorted impediments. In their new role, they are facilitating DNA synthesis on replication stalling sites formed by non-B DNA structures and thereby helping the completion of DNA replication, a process otherwise crucial for preserving genome integrity and concluding normal cell division. This review summarizes the evidence gathered describing the function of specialized DNA polymerases in replicating DNA through non-B DNA structures.  相似文献   

2.
DNA polymerase epsilon is a mammalian polymerase that has a tightly associated 3'----5' exonuclease activity. Because of this readily detectable exonuclease activity, the enzyme has been regarded as a form of DNA polymerase delta, an enzyme which, together with DNA polymerase alpha, is in all probability required for the replication of chromosomal DNA. Recently, it was discovered that DNA polymerase epsilon is both catalytically and structurally distinct from DNA polymerase delta. The most striking difference between the two DNA polymerases is that processive DNA synthesis by DNA polymerase delta is dependent on proliferating cell nuclear antigen (PCNA), a replication factor, while DNA polymerase epsilon is inherently processive. DNA polymerase epsilon is required at least for the repair synthesis of UV-damaged DNA. DNA polymerases are highly conserved in eukaryotic cells. Mammalian DNA polymerases alpha, delta and epsilon are counterparts of yeast DNA polymerases I, III and II, respectively. Like DNA polymerases I and III, DNA polymerase II is also essential for the viability of cells, which suggests that DNA polymerase II (and epsilon) may play a role in DNA replication.  相似文献   

3.
U L?nn  S L?nn 《Nucleic acids research》1986,14(9):3883-3894
We describe an approach, using alkaline cell lysis and digestion with nuclease S1, which permits to distinguish between newly ligated DNA and the DNA of mature chromatin. When cells with steady-state labelled DNA (mature DNA) are analyzed, the results show labelled "nucleosomal-sized" DNA. However, when DNA of cells pulse-labelled with thymidine for 45 seconds is examined one can detect only large DNA. The newly ligated DNA is not reduced to "nucleosomal-sized" DNA by nuclease S1. When the large DNA is denatured in formamide one can detect 10 kb DNA fragments. Furthermore in pulse-chase experiments there appear, after formamide-treatment, increasing amounts of "nucleosomal-sized" DNA with a parallel decrease in the amount of 10 kb DNA fragments. Hence the newly ligated, large, DNA differs from mature DNA and represents a distinct stage during DNA replication.  相似文献   

4.
The properties of three DNA polymerase species A, B and C, purified from Chlamydomonas reinhardii were compared. DNA polymerases A and B have Km values with respect to deoxyribonucleoside triphosphates of 19 micron and 3 micron respectively. DNA polymerase A is most active with activated DNA, but will also use native DNA and synthetic RNA and DNA templates with DNA primers. DNA polymerase B is also most active with activated DNA, but will use denatured DNA and synthetic DNA templates. It is inactive with RNA templates. DNA polymerase B is completely inactive in the presence of 100 micron-heparin, which has no effect on DNA polymerase A activity. Heparin dissociates DNA polymerase B into subunits that are still catalytically active, but which heparin inhibited. DNA polymerase B possesses deoxyribonuclease activity that is inhibited by 5 micron-heparin, suggesting that the deoxyribonuclease is an integral part of the DNA polymerase moiety. DNA polymerase A is devoid of nuclease activity. DNA polymerase C is similar to DNA polymerase B in all these properties, though it is more active with RNA primers and has greater heat-sensitivity.  相似文献   

5.
Three DNA polymerases, alpha, delta, and epsilon are required for viability in Saccharomyces cerevisiae. We have investigated whether DNA polymerases epsilon and delta are required for DNA replication. Two temperature-sensitive mutations in the POL2 gene, encoding DNA polymerase epsilon, have been identified by using the plasmid shuffle technique. Alkaline sucrose gradient analysis of DNA synthesis products in the mutant strains shows that no chromosomal-size DNA is formed after shift of an asynchronous culture to the nonpermissive temperature. The only DNA synthesis observed is a reduced quantity of short DNA fragments. The DNA profiles of replication intermediates from these mutants are similar to those observed with DNA synthesized in mutants deficient in DNA polymerase alpha under the same conditions. The finding that DNA replication stops upon shift to the nonpermissive temperature in both DNA polymerase alpha- and DNA polymerase epsilon- deficient strains shows that both DNA polymerases are involved in elongation. By contrast, previous studies on pol3 mutants, deficient in DNA polymerase delta, suggested that there was considerable residual DNA synthesis at the nonpermissive temperature. We have reinvestigated the nature of DNA synthesis in pol3 mutants. We find that pol3 strains are defective in the synthesis of chromosomal-size DNA at the restrictive temperature after release from a hydroxyurea block. These results demonstrate that yeast DNA polymerase delta is also required at the replication fork.  相似文献   

6.
Methyl methanesulfonate (MMS) inhibits both thymidine incorporation into DNA in mitogen-activated human lymphocytes and deoxythymidine triphosphate incorporation into template DNA by DNA polymerase-alpha in a cell-free system. When MMS-modified DNA was used as the template for DNA synthesis utilizing unmodified DNA polymerase-alpha, nucleotide incorporation into template DNA was not inhibited. When unmodified DNA was used as the template for DNA synthesis utilizing MMS-modified DNA polymerase-alpha, nucleotide incorporation was differentially inhibited dependent on the MMS concentration. An analysis of the kinetics of DNA polymerase-alpha inhibition showed that incorporation of all 4 deoxynucleoside triphosphates into DNA template was noncompetitively inhibited by MMS, which is consistent with nonspecific MMS modification of the enzyme. These data indicate that MMS modification of DNA polymerase-alpha alone is sufficient to inhibit the incorporation of deoxynucleoside triphosphates into template DNA in vitro. The data further indicate that alkylation of both DNA polymerase-alpha and DNA template synergistically increases inhibition of DNA synthesis.  相似文献   

7.
Type I restriction enzymes cleave DNA at non-specific sites far from their recognition sequence as a consequence of ATP-dependent DNA translocation past the enzyme. During this reaction, the enzyme remains bound to the recognition sequence and translocates DNA towards itself simultaneously from both directions, generating DNA loops, which appear to be supercoiled when visualised by electron microscopy. To further investigate the mechanism of DNA translocation by type I restriction enzymes, we have probed the reaction intermediates with DNA topoisomerases. A DNA cleavage-deficient mutant of EcoAI, which has normal DNA translocation and ATPase activities, was used in these DNA supercoiling assays. In the presence of eubacterial DNA topoisomerase I, which specifically removes negative supercoils, the EcoAI mutant introduced positive supercoils into relaxed plasmid DNA substrate in a reaction dependent on ATP hydrolysis. The same DNA supercoiling activity followed by DNA cleavage was observed with the wild-type EcoAI endonuclease. Positive supercoils were not seen when eubacterial DNA topoisomerase I was replaced by eukaryotic DNA topoisomerase I, which removes both positive and negative supercoils. Furthermore, addition of eukaryotic DNA topoisomerase I to the product of the supercoiling reaction resulted in its rapid relaxation. These results are consistent with a model in which EcoAI translocation along the helical path of closed circular DNA duplex simultaneously generates positive supercoils ahead and negative supercoils behind the moving complex in the contracting and expanding DNA loops, respectively. In addition, we show that the highly positively supercoiled DNA generated by the EcoAI mutant is cleaved by EcoAI wild-type endonuclease much more slowly than relaxed DNA. This suggests that the topological changes in the DNA substrate associated with DNA translocation by type I restriction enzymes do not appear to be the trigger for DNA cleavage.  相似文献   

8.
KB cells productively infected with human adenovirus type 2 contain an alkalistable class of viral DNA sedimenting in a broad zone between 50 and 90S as compared to 34S for virion DNA. This type of DNA is characterized as viral by DNA-DNA hybridization. It is extremely sensitive to shear fragmentation. Extensive control experiments demonstrate that the fast-sedimenting viral DNA is not due to artifactual drag of viral DNA mechanically trapped in cellular DNA or to association of viral DNA with protein or RNA. Furthermore, the fast-sedimenting DNA is found after infection with multiplicities between 1 and 1,000 PFU/cell and from 6 to 8 h postinfection until very late in infection (24 h). Analysis in dye-buoyant density gradients eliminates the possibility that the fast-sedimenting viral DNA represents supercoiled circular molecules. Upon equilibrium centrifugation in alkaline CsCl density gradients, the fast-sedimenting viral DNA bands in a density stratum intermediate between that of cellular and viral DNA. In contrast, the 34S virion DNA isolated and treated in the same manner as the fast-sedimenting DNA cobands with viral marker DNA. After ultrasonic treatment of the fast-sedimenting viral DNA, it shifts to the density positions of viral DNA and to a lesser extent to that of cellular DNA. The evidence presented here demonstrates that the 50 to 90S viral DNA represents adenovirus DNA covalently integrated into cell DNA.  相似文献   

9.
Potential of chlorpyrifos and cypermethrin forming DNA adducts   总被引:1,自引:0,他引:1  
Cui Y  Guo J  Xu B  Chen Z 《Mutation research》2006,604(1-2):36-41
DNA adducts consist of DNA monoadducts, DNA intrastrand crosslinks, DNA interstrand crosslinks, and DNA-protein crosslinks. If not repaired or mistakenly repaired, DNA adducts may lead to gene mutations and initiate carcinogenesis. Two insecticides, chlorpyrifos and cypermethrin, were studied for their potential of forming DNA monoadducts, DNA interstrand crosslinks, and DNA-protein crosslinks in primary mouse hepatocytes via the assays of bioluminescence, ethidium bromide fluorescence, and K+-SDS precipitation. DNA interstrand crosslinks were also measured on calf thymus DNA. It was shown that chlorpyrifos could not form DNA adducts. Cypermethrin formed DNA monoadducts and DNA interstrand crosslinks in hepatocytes. However, cypermethrin didn't form DNA interstrand crosslinks on calf thymus DNA and in hepatocytes treated with SKF-525A, a cytochrome P450 inhibitor, which suggests that active metabolites of cypermethrin instead of cypermethrin itself caused DNA interstrand crosslinks and that cytochrome P450 may be involved in the activation of cypermethrin.  相似文献   

10.
Due to the helical structure of DNA the process of DNA replication is topologically complex. Freshly replicated DNA molecules are catenated with each other and are frequently knotted. For proper functioning of DNA it is necessary to remove all of these entanglements. This is done by DNA topoisomerases that pass DNA segments through each other. However, it has been a riddle how DNA topoisomerases select the sites of their action. In highly crowded DNA in living cells random passages between contacting segments would only increase the extent of entanglement. Using molecular dynamics simulations we observed that in actively supercoiled DNA molecules the entanglements resulting from DNA knotting or catenation spontaneously approach sites of nicks and gaps in the DNA. Type I topoisomerases, that preferentially act at sites of nick and gaps, are thus naturally provided with DNA–DNA juxtapositions where a passage results in an error-free DNA unknotting or DNA decatenation.  相似文献   

11.
Amiloride intercalates into DNA and inhibits DNA topoisomerase II   总被引:1,自引:0,他引:1  
Amiloride is capable of inhibiting DNA synthesis in mammalian cells in culture. Recent evidence indicates that the enzyme, DNA topoisomerase II, is probably required for DNA synthesis to occur in situ. In experiments to determine the mechanism of inhibition of DNA synthesis by amiloride, we observed that amiloride inhibited both the catalytic activity of purified DNA topoisomerase II in vitro and DNA topoisomerase II-dependent cell functions in vivo. Many compounds capable of inhibiting DNA topoisomerase II are DNA intercalators. Thus, we performed studies to determine if and how amiloride bound to DNA. Results indicated that amiloride 1) shifted the thermal denaturation profile of DNA, 2) increased the viscosity of linear DNA, and 3) unwound circular DNA, all behavior consistent with a DNA intercalation mechanism. Furthermore, quantitative and qualitative measurements of amiloride fluorescence indicated that amiloride (a) bound reversibly to purified DNA under conditions of physiologic ionic strength, and (b) bound to purified nuclei in a highly cooperative manner. Lastly, amiloride did not promote the cleavage of DNA in the presence of DNA topoisomerase II, indicating that the mechanism by which amiloride inhibited DNA topoisomerase II was not through the stabilization of a "cleavable complex" formed between DNA topoisomerase II, DNA, and amiloride. The ability of amiloride to intercalate with DNA and inhibit topoisomerase II is consistent with the proposed planar, hydrogen-bonded, tricyclic nature of amiloride's most stable conformation. Thus, DNA and DNA topoisomerase II must be considered as new cellular targets of amiloride action.  相似文献   

12.
In an effort to identify the deoxyribonucleic acid (DNA) polymerase activities responsible for mammalian viral and cellular DNA replication, the effect of DNA synthesis inhibitors on isolated DNA polymerases was compared with their effects on viral and cellular DNA replication in vitro. DNA polymerase alpha, simian virus 40 (SV40) DNA replication in nuclear extracts, and CV-1 cell (the host for SV40) DNA replication in isolated nuclei all responded to DNA synthesis inhibitors in a quantitatively similar manner: they were relatively insensitive to 2',3'-dideoxythymidine 5'-triphosphate (d2TTP), but completely inhibited by aphidicolin, 1-beta-D-arabinofuranosylcytosine 5'-triphosphate (araCTP), and N-ethylmaleimide. In comparison, DNA polymerases beta and gamma were inhibited by d2TTP but insensitive to aphidicolin and 20--30 times less sensitive to araCTP than DNA polymerase alpha. Herpes simplex virus type 1 (HSV-1) DNA polymerase and DNA polymerase alpha were the only enzymes tested that were relatively insensitive to d2TTP; DNA polymerases beta and gamma, phage T4 and T7 DNA polymerases, and Escherichia coli DNA polymerase I were 100--250 times more sensitive. The results with d2TTP were independent of enzyme concentration, primer-template concentration, primer-template choice, and the labeled dNTP. A specific requirement for DNA polymerase alpha in the replication of SV40 DNA was demonstrated by the fact that DNA polymerase alpha was required, in addition to other cytosol proteins, to reconstitute SV40 DNA replication activity in N-ethylmaleimide-inactivated nuclear extracts containing replicating SV40 chromosomes. DNA polymerases beta and gamma did not substitute for DNA polymerase alpha. In contrast to SV40 and CV-1 DNA replication, adenovirus type 2 (Ad-2) DNA replication in isolated nuclei was inhibited by d2TTP to the same extent as gamma-polymerase. Ad-2 DNA replication was also inhibited by aphidicolin to the same extent as alpha-polymerase. Synthesis of CV-1 DNA, SV40 DNA, and HSV-1 DNA in intact CV-1 cells was inhibited by aphidicolin. Ad-2 DNA replication was also inhibited, but only at a 100-fold higher concentration. We found no effect of 2'-3'-dideoxythymidine (d2Thd) on cellular or viral DNA replication in spite of the fact that Ad-2 DNA replication in isolated nuclei was inhibited 50% by a ratio of d2TTP/dTTP of 0.02. This was due to the inability of CV-1 and Hela cells to phosphorylate d2Thd to d2TTP. These data are consistent with the hypothesis that DNA polymerase alpha is the only DNA polymerase involved in replicating SV40 DNA and CV-1 DNA and that Ad-2 DNA replication involves both DNA polymerases gamma and alpha.  相似文献   

13.
We performed molecular dynamics simulations of the genome packaging of bacteriophage P4 using two coarse-grained models of DNA. The first model, 1DNA6 (one pseudo-atom per six DNA basepairs), represents DNA as a string of beads, for which DNA torsions are undefined. The second model, 3DNA6 (three pseudo-atoms per six DNA basepairs), represents DNA as a series of base planes with torsions defined by the angles between successive planes. Bacteriophage P4 was packaged with 1DNA6, 3DNA6 in a torsionally relaxed state, and 3DNA6 in a torsionally strained state. We observed good agreement between the packed conformation of 1DNA6 and the packed conformations of 3DNA6. The free energies of packaging were in agreement, as well. Our results suggest that DNA torsions can be omitted from coarse-grained bacteriophage packaging simulations without significantly altering the DNA conformations or free energies of packaging that the simulations predict.  相似文献   

14.
We have purified from Xenopus laevis ovaries a major DNA polymerase alpha species that lacked DNA primase activity. This primase-devoid DNA polymerase alpha species exhibited the same sensitivity as the DNA polymerase DNA primase alpha to BuAdATP and BuPdGTP, nucleotide analogs capable of distinguishing between DNA polymerase delta and DNA polymerase DNA primase alpha. The primase-devoid DNA polymerase alpha species also lacked significant nuclease activity indicative of the alpha-like (rather than delta-like) nature of the DNA polymerase. Using a poly(dT) template, the primase-devoid DNA polymerase alpha species elongated an oligo(rA10) primer up to 51-fold more effectively than an oligo(dA10) primer. In direct contrast, the DNA polymerase DNA primase alpha complex showed only a 4.6-fold preference for oligoribonucleotide primers at the same template/primer ratio. The catalytic differences between the two DNA polymerase alpha species were most dramatic at a template/primer ratio of 300. The primase-devoid DNA polymerase alpha species was found at high levels throughout oocyte and embryonic development. This suggests that the primase-devoid DNA polymerase alpha species could play a physiological role during DNA chain elongation in vivo, even if it is chemically related to DNA polymerase DNA primase alpha.  相似文献   

15.
The thermodynamics of 13 hybridization reactions between 10 base DNA sequences of design 5'-ATGCXYATGC-3' with X, Y = A, C, G, T and their complementary PNA and DNA sequences were determined from isothermal titration calorimetry (ITC) measurements at ambient temperature. For the PNA/DNA hybridization reactions, the binding constants range from 1.8 x 10(6)M(-1)for PNA(TT)/DNA to 4.15 x 10(7)M(-1)for PNA(GA)/DNA and the binding enthalpies range from -194 kJ mol(-1)for PNA(CG)/DNA to -77 kJ mol(-1)for PNA(GT)/DNA. For the corresponding DNA/DNA binding reactions, the binding constants range from 2.9 x 10(5)M(-1)for DNA(GT)/DNA to 1.9 x 10(7)M(-1)for DNA(CC)/DNA and the binding enthalpies range from -223 kJ mol(-1)for DNA(CG)/DNA to -124 kJ mol(-1)for DNA(TT)/DNA. Most of the PNA sequences exhibited tighter binding affinities than their corresponding DNA sequences resulting from smaller entropy changes in the PNA/DNA hybridization reactions. van't Hoff enthalpies and extrapolated Delta G values determined from UV melting studies on the duplexes exhibited closer agreement with the ITC binding enthalpies and Delta G values for the DNA/DNA duplexes than for the PNA/DNA duplexes.  相似文献   

16.
DNA polymerases catalyze the synthesis of DNA using a continuous uninterrupted template strand. However, it has been shown that a 3'-->5' exonuclease-deficient form of the Klenow fragment of Escherichia coli DNA polymerase I as well as DNA polymerase of Thermus aquaticus can synthesize DNA across two unlinked DNA templates. In this study, we used an oligonucleotide-based assay to show that discontinuous DNA synthesis was present in HeLa cell extracts. DNA synthesis inhibitor studies as well as fractionation of the extracts revealed that most of the discontinuous DNA synthesis was attributable to DNA polymerase alpha. Additionally, discontinuous DNA synthesis could be eliminated by incubation with an antibody that specifically neutralized DNA polymerase alpha activity. To test the relative efficiency of each nuclear DNA polymerase for discontinuous synthesis, equal amounts (as measured by DNA polymerase activity) of DNA polymerases alpha, beta, delta (+/- PCNA) and straightepsilon (+/- PCNA) were used in the discontinuous DNA synthesis assay. DNA polymerase alpha showed the most discontinuous DNA synthesis activity, although small but detectable levels were seen for DNA polymerases delta (+PCNA) and straightepsilon (- PCNA). Klenow fragment and DNA polymerase beta showed no discontinuous DNA synthesis, although at much higher amounts of each enzyme, discontinuous synthesis was seen for both. Discontinuous DNA synthesis by DNA polymerase alpha was seen with substrates containing 3 and 4 bp single-strand stretches of complementarity; however, little synthesis was seen with blunt substrates or with 1 bp stretches. The products formed from these experiments are structurally similar to that seen in vivo for non-homologous end joining in eukaryotic cells. These data suggest that DNA polymerase alpha may be able to rejoin double-strand breaks in vivo during replication.  相似文献   

17.
Replication protein A (RP-A) is a heterotrimeric single-stranded DNA binding protein with important functions in DNA replication, DNA repair and DNA recombination. We have found that RP-A from calf thymus can unwind DNA in the absence of ATP and MgCl2, two essential cofactors for bona fide DNA helicases (Georgaki, A., Strack, B., Podust, V. and Hübscher, U. FEBS Lett. 308, 240-244, 1992). DNA unwinding by RP-A was found to be sensitive to MgCl2, ATP, heating and freezing/thawing. Escherichia coli single stranded DNA binding protein at concentrations that coat the single stranded regions had no influence on DNA unwinding by RP-A suggesting that RP-A binds fast and tightly to single-stranded DNA. DNA unwinding by RP-A did not show directionality. Experiments with monoclonal antibodies strongly suggested that the 70kDa subunit is responsible for DNA unwinding. Phosphorylation of the 32kDa subunit of RP-A by chicken cdc2 kinase facilitated DNA unwinding indicating that this posttranslational modification might be important for modulating this activity of RP-A. Finally, DNA unwinding of a primer recognition complex for DNA polymerase delta which is composed of proliferating cell nuclear antigen, replication factor C and ATP bound to a singly-primed M13DNA slightly inhibited DNA unwinding. An important role for DNA unwinding by RP-A in processes such as initiation of DNA replication, fork propagation, DNA repair and DNA recombination is discussed.  相似文献   

18.
Purification and properties of spleen necrosis virus DNA polymerase.   总被引:10,自引:10,他引:0  
DNA polymerase was purified to apparent electrophoretic homogeneity from virions of spleen necrosis virus (SNV). (SNV is a member of the reticuloendotheliosis group of avian ribodeoxyviruses). The SNV DNA polymerase appears to consist of a single polypeptide with a molecular weight of 68,000. The SNV DNA polymerase has a preference for Mn2+ for DNA synthesis with an RNA template and Mg2+ for DNA synthesis with a deoxyribohomopolymer template. At the optimum concentrations of divalent cation, the relative rates of DNA synthesis by SNV DNA polymerase with different template.primers were similar to the relative rates of DNA synthesis by an avian leukosis virus DNA polymerase, with the exception of a lower relative rate of DNA synthesis by SNV DNA polymerase with SNV RNA. However, in contrast to DNA synthesized by the avian leukosis virus DNA polymerase with a SNV RNA template, DNA synthesized by SNV DNA polymerase with an SNV RNA template did not hybridize to the SNV RNA. SNV DNA polymerase has RNase H activity which is antigenically distinct from the RNase H activity of avian leukosis-sarcoma virus DNA polymerase.  相似文献   

19.
A Saitoh  S Tada  T Katada    T Enomoto 《Nucleic acids research》1995,23(11):2014-2018
Many prokaryotic and viral DNA helicases involved in DNA replication stimulate their cognate DNA primase activity. To assess the stimulation of DNA primase activity by mammalian DNA helicases, we analyzed the synthesis of oligoribonucleotides by mouse DNA polymerase alpha-primase complex on single-stranded circular M13 DNA in the presence of mouse DNA helicase B. DNA helicase B was purified by sequential chromatography through eight columns. When the purified DNA helicase B was applied to a Mono Q column, the stimulatory activity for DNA primase-catalyzed oligoribonucleotide synthesis and DNA helicase and DNA-dependent ATPase activities of DNA helicase B were co-eluted from the column. The synthesis of oligoribonucleotides 5-10 nt in length was markedly stimulated by DNA helicase B. The synthesis of longer species of oligoribonucleotides, which were synthesized at a low level in the absence of DNA helicase B, was inhibited by DNA helicase B. The stimulatory effect of DNA helicase B was marked at low template concentrations and little or no effect was observed at high concentrations. The mouse single-stranded DNA binding protein, replication protein A (RP-A), inhibited the primase activity of the DNA polymerase alpha-primase complex and DNA helicase B partially reversed the inhibition caused by RP-A.  相似文献   

20.
Radioactive DNA was prepared in extensive (4 h) Dane particle DNA polymerase reactions. In different experiments the amount of new DNA, determined by the amount of nucleotide incorporation into an acid-insoluble form, was between 29 and 45% of the total circular DNA isolated from Dane particle preparations after the reaction. DNA reassociation kinetics were used to determine the complexity of the newly synthesized DNA. In different experiments COt1/2 values, corresponding to between 625 and 1,250 nucleotide pairs, were obtained for the radioactive Dane particle DNA. These results suggest that a unique region (or regions), corresponsing to approximately one-fourth to one-half of the circular Dane particle DNA template, was copied one time during the reaction. DNA and RNA extracted from hepatitis B virus-infected liver but not from uninfected liver accelerated the rate of reassociation of radioactive DNA from Dane particles. These Dane particle DNA base sequences were found in alkali-stable, rapidly sedimenting DNA from infected liver as well as in DNA sedimenting at a rate similar to the DNA extracted from Dane particles. These findings are consistent with Dane particle DNA being hepatitis B virus DNA that is integrated into high-molecular-weight cellular DNA and transcribed into RNA in infected liver.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号