首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The relationship between the chromosomal location of heterochromatin C-bands and of four non-homologous repeated sequence families constituting 8 to 12% of total rye DNA has been investigated in chromosomes of rye (Secale cereale) by in situ hybridisation. Three rye varieties, a set of rye disomic additions to wheat and a triticale were studied. Only centromeric and nucleolar organizer region (NOR) associated C-bands failed to display hybridisation to at least one of the sequences and many telomeric blocks of heterochromatin contained all four repeated sequence families. Both between-variety differences in the chromosomal distribution of repeated sequences, and intravarietal heterozygosities were frequently noted and are probably widespread. — Previously reported deletions of heterochromatin from King II rye chromosomes added to the Holdfast wheat complement were correlated with deletions of some, but not all, of the highly repeated sequence families. A previously unreported loss of some families from King II rye chromosome 4R/7R in a Holdfast wheat genetic background was detected. This loss was not associated with complete deletion of a C-band. A deletion has also probably occurred from the short arm telomere of 4R/7R in the triticale variety Rosner. It is suggested that the families of repeats in rye telomeric heterochromatin which are absent from wheat are selected against in the wheat genetic background.  相似文献   

2.
B. N. Irani  C. R. Bhatia 《Genetica》1972,43(2):195-200
Following disc electrophoresis on standard gels, rye seed extracts showed two bands (ADH-3 and 5) for alcohol dehydrogenase. The ADH-3 band was homologous to the ADH band observed in other diploid species of the Triticinae, and with the ADH-3 band of 4 × and 6 × wheat. It is proposed that the rye isoenzymes ADH-3 and 5 are governed respectively, by the genes Adh R1 and Adh R2. Using bread wheat (Holdfast) lines with disomic addition of individual rye (King II) chromosomes, we found that the ADH-5 band was associated with the addition of rye chromosome IV (after Riley), indicating thereby that Adh R2 gene is located on this chromosome. The products of Adh R1 and Adh R2 do not form active heterodimers, among themselves, but do form active dimers with wheat ADH monomers. It is suggested that the use of chromosomal addition lines may provide a method for locating genes for those enzymes, where the rye and wheat isoenzymes are electrophoretically distinct.  相似文献   

3.
Pigment as well as isozyme variations were observed among aspen (Populus tremuloides Michx.) plants regenerated from callus cultures. Out of more than 600 plantlets, two chimeric plants (one with green base and two albino shoots and the other with an albino shoot) were produced. Callus derived from albino shoots produced albino as well as chimeric plants when transferred to shoot inducing medium. Isozyme patterns of 119 plants were examined by starch gel electrophoresis. Thirty plants showed variation in shikimic dehydrogenase isozyme and 41 in isocitric dehydrogenase. Variation was also observed in malate dehydrogenase and phosphoglucose isomerase. No variation was seen in 6-phosphogluconate dehydrogenase. Pigment variation was not associated with any isozyme changes.Abbreviations BA 6-benzyladenine - IBA indole-3-butyric acid - GD Gresshoff & Doy medium - WPM woody plant medium - SKD shikimic dehydrogenase - IDH isocitric dehydrogenase - MDH malate dehydrogenase - PGI phosphoglucose isomerase - 6-PGD 6-phosphogluconate dehydrogenase  相似文献   

4.
Homozygous wheat/rye (1BL/1RS or 1AS/ 1RL) translocation lines have significantly contributed to wheat production, and several other wheat/rye translocation lines show a potential promise against biotic and abiotic stresses. Detecting the presence of rye at the chromosome level is feasible by C-banding and isozyme protocols, but the diagnostic strength of genomic in situ hybridization for eventually analyzing smaller DNA introgressions has greater significance. As a first step we have applied the genomic in situ hybridization technique to detect rye chromosomes in a wheat background using germ plasm of agricultural significance. By this method rye contributions to the translocations 1BL/1RS, 1AL/1RS, 5AS/5RL and 6BS/6RL could be identified. Differential labelling has further enabled the detection of rye and Thinopyrum bessarabicum chromosomes in a trigeneric hybrid of Triticum aestivum/Th. bessarabicum//Secale cereale.  相似文献   

5.
Cakmak  I.  Derici  R.  Torun  B.  Tolay  I.  Braun  H.J.  Schlegel  R. 《Plant and Soil》1997,196(2):249-253
Using the disomic wheat-rye addition lines (Triticum aestivum L., cv. Holdfast-Secale cereale L., cv. King-II) and an octoploid triticale line (xTriticosecale Wittmark L. "PlutoxFakon") as well as the respective wheat and rye parents, greenhouse experiments were carried out to study the role of rye chromosomes on the severity of Zn deficiency symptoms, shoot dry matter production, Zn efficiency, shoot Zn concentration and Zn content. Plants were grown in a Zn-deficient calcareous soil with (10 mg Zn kg-1 soil) and without Zn supply. Zinc efficiency was calculated as the ratio of dry weight produced under Zn deficiency to the dry weight produced under Zn fertilization. In the experiments with addition lines, visual Zn deficiency symptoms were slight in the rye cultivar King-II, but were severe in the wheat cultivar Holdfast. The addition of rye chromosomes, particularly 1R, 2R and 7R, into Holdfast reduced the severity of deficiency symptoms. Holdfast showed higher decreases in shoot dry matter production by Zn deficiency and thus had a low Zn efficiency (53 %), while King-II was less affected by Zn deficiency and had a higher Zn efficiency (89 %). With the exception of the 3R line, all addition lines had higher Zn efficiency than their wheat parent: the 1R line had the highest Zn efficiency (80 %). In the experiment with the triticale cultivar and its parents, rye cv. Pluto and wheat cv. Fakon, Zn deficiency symptoms were absent in Pluto, slight in triticale and very severe in Fakon. Zinc efficiency was 88 % for Pluto, 73 % for triticale and 64% for Fakon. Such differences in Zn efficiency were better related to the total amount of Zn per shoot than to the amount of Zn per unit dry weight of shoot. Only in the rye cultivars, Zn efficiency was closely related with Zn concentration. Triticale was more similar to rye than wheat regarding Zn concentration and Zn accumulation per shoot under both Zn-deficient and Zn-sufficient conditions.The results presented in this study show that rye has an exceptionally high Zn efficiency, and the rye chromosomes, particularly 1R and 7R carry the genes controlling Zn efficiency. To our knowledge, the result with triticale and its rye parents is the first report showing that the genes controlling Zn efficiency in rye are transferable into wheat and can be used for development of new wheat varieties with high Zn efficiency for severely Zn-deficient conditions.  相似文献   

6.
Li XF  Ma JF  Matsumoto H 《Plant physiology》2000,123(4):1537-1544
Al-Induced secretion of organic acids from the roots has been considered as a mechanism of Al tolerance, but the processes leading to the secretion of organic acids are still unknown. In this study, the secretion pattern and alteration in the metabolism of organic acids under Al stress were examined in rye (Secale cereale L. cv King) and wheat (Triticum aestivum L. cv Atlas 66). Al induced rapid secretion of malate in the wheat, but a lag (6 and 10 h for malic and citric acids, respectively) between the exposure to Al and the secretion of organic acids was observed in the rye. The activities of isocitrate dehydrogenase, phosphoenolpyruvate carboxylase, and malate dehydrogenase were not affected by Al in either plant. The activity of citrate synthase was increased by the exposure to Al in the rye, but not in the wheat. The secretion of malate was not suppressed at low temperature in the wheat, but that of citrate was stopped in the rye. The Al-induced secretion of citrate from roots of the rye was inhibited by the inhibitors of a citrate carrier, which transports citrate from the mitochondria to the cytoplasm. All of these results suggest that alteration in the metabolism of organic acids is involved in the Al-induced secretion of organic acids in rye, but only activation of an anion channel seems to be responsible for the rapid secretion of malate in the wheat.  相似文献   

7.
Morphological and isozyme variation was observed among plants regenerated from callus cultures of Cereus peruvianus. Different morphological types of shoots (68%) were observed in 4-year-old regenerated plants, while no distinct morphological variants were observed in plants grown from germinated seeds. Isozyme patterns of 633 plants regenerated from calli and of 261 plants grown from germinated seeds showed no variation in isocitrate dehydrogenase isozyme, and the differential sorbitol dehydrogenase, alcohol dehydrogenase, malate dehydrogenase, acid phosphatase, and peroxidase isozyme patterns observed in regenerated plants were attributed to nonallelic variation. Allelic variation was detected at three isoesterase loci. The proportion of polymorphic loci for both populations was 13.6% and the deviation from Hardy–Weinberg equilibrium for the Est-1 and Est-7 loci observed in somaclones was attributed to the manner in which the regenerant population was established. The high values for genetic identity among regenerant and seed-grown plant populations are in accordance with the low levels of interpopulation genetic divergence. In somaclones of C. peruvianus, morphological divergence was achieved within a short time but was not associated with any isozyme changes and also was not accompanied by biochemical genetic divergence.  相似文献   

8.
Summary The 6-phosphogluconate dehydrogenase (6-PGD) zymogram phenotypes of wheat, rye and their aneuploid derivatives were determined. Two genes involved in the production of 6-PGD isozymes were located on chromosome arms CRL (4 RL) and FRL (6 RL) of Imperial rye. On the basis of differential interactions between wheat and rye chromosomes, evidence was obtained that genes located on chromosomes 6 A, 6 BL and 7 BL control 6-PGD isozyme activities in Chinese Spring wheat. The wheat and rye 6-PGD zymogram phenotypes were indicative of homoeologous relationships between rye chromosome 6 RL to wheat chromosomes of group 6, and rye chromosome 4 RL to wheat chromosomes of group 7.  相似文献   

9.
Summary Extracts from phylloclads of Asparagus officinails were electrophoretically analyzed for isozyme polymorphism. Fourteen enzyme systems were examined using four buffer systems: seven enzymes (acid phosphatase, catalase, glutamate-oxaloacetate transaminase, isocitrate dehydrogenase, malate dehydrogenase, peroxidase, and 6-phosphogluconate dehydrogenase) exhibited clear and consistent banding patterns. Isozyme polymorphism was studied in seven pairs of male and female doubled haploids and in their male F1s. Segregation of polymorphic loci was examined in the backcross progenies and was found to be consistent with a simple Mendelian inheritance in all cases, except for three anodical peroxidases, where two factors have been hypothesized. No linkage could be found between isozyme markers that were segregating in the same cross, but association was demonstrated between one malate dehydrogenase locus and the sex determining genes. The availability of isozyme markers may be useful in breeding and, in particular, the localization of one malate dehydrogenase locus on the sex chromosomes may be helpful in mapping the sex genes.  相似文献   

10.
A primitive trichomonad, Monocercomonas sp. (strain NS-1:PRR) from Natrix sipedon, was grown axenically in Diamond's medium. Activity of NADH oxidase, malate dehydrogenase, malate dehydrogenase (decarboxylating) and of the anaerobic enzymes, pyruvate synthase and hydrogenase as well as of several hydrolases was demonstrated in homogenates. The subcellular distribution of these activities was studied by means of analytical differential and isopycnic centrifugation of homogenates prepared in 0.25 M sucrose. NADH oxidase and malate dehydrogenase are in the nonsedimentable part of the cytoplasm. Malate dehydrogenase (decarboxylating), pyruvate synthase, and hydrogenase are associated with a large particle which equilibrates at density 1.22. In its properties, this particle corresponds to the microbody-like hydrogenosomes of Tritrichomonas foetus. The 5 hydrolases studied are associated with at least 2 different particle populations: a large particle population equilibrating at densities from 1.10 to 1.16 is the exclusive location of 3 enzymes (β-galactosidase, protease and β-N-acetylglucosaminidase), 2 of which have a pH optimum close to neutrality. These particles contain part of the acid phosphatase and β-glucuronidase. Another part of these 2 enzymes is associated with a separate population of smaller granules with equilibrium densities of 1.16 to 1.18. The 2 types of hydrolase-carrying particles are also biochemically very similar to their counterparts in T. foetus.  相似文献   

11.
Summary Electrophoretic analysis of isozymal differences was performed with extracts of wild carrot (Daucus carota L.) cells, grown in the presence and absence of 2,4-dichlorophenoxyacetic acid (2,4-D). There were no differences in the patterns of malate dehydrogenase, acid phosphatase, aspartate aminotransferase, and γ-glutamyl transferase. Quantitative differences in peroxidase isozymes were detected, the plus 2,4-D cultures having lower activities. Esterase patterns were similar, but there were differences in individual isozyme activities and an additional form present in the minus 2,4-D cells. the greatest differences were in patterns of glutamate dehydrogenase with the minus 2,4-D cultures containing only the slowly migrating isozymes. The changes in glutamate dehydrogenase, as revealed by isozyme changes, together with the requirement for ammonia in embryogenesis, suggests that this enzyme may be associated with differentiation in wild carrot cells.  相似文献   

12.
Enzyme levels in pea seedlings grown on highly salinized media   总被引:6,自引:6,他引:0       下载免费PDF全文
The levels of 18 enzymes were determined in leaves, stems, and roots of 11-day-old pea seedlings grown in a liquid medium or in the same medium containing, in addition, 5 atmospheres of either NaCl, KCl, Na2SO4, or K2SO4. Though the plants grown in saline media were stunted, the specific activities of the enzymes were the same in the given tissues of all plants. Also, the electrophoretic pattern of isozymes of malate dehydrogenase was not altered by growth of the plants in a saline medium. However, the isozyme pattern of peroxidase from roots of salt-grown plants was altered in that two of the five detectable isozymes migrated a little more slowly than those in extracts from nonsaline plant tissues.  相似文献   

13.
Summary Significant increases in the kernel protein content of lines of the bread wheat variety Chinese Spring, in which a pair of rye chromosome 2 substitutes for group 2 chromosomes of wheat, were observed in plants grown at three different locations. Fractionation of proteins on the basis of their solubility did not show any significant variation in the relative proportions of alcohol, salt, acid and alkali soluble proteins. Similarly, electrophoretic studies of saline, alcohol and acetic acid-urea soluble proteins did not reveal any addition or deletion of protein bands in comparison with the Chinese Spring control. Apparently, the substituted rye chromosomes do not contribute any proteins different from those already present in wheat. The electrophoretic data give further evidence of the homoeology of rye chromosome 2 with the group 2 chromosomes of wheat.  相似文献   

14.
Bulk segregant analysis was used to obtain a random amplified polymorphic DNA (RAPD) marker specific for the rye chromosome arm of the 1BL.1RS translocation, which is common in many high-yielding bread wheat varieties. The RAPD-generated band was cloned and end-sequenced to allow the construction of a pair of oligonucleotide primers that PCR-amplify a DNA sequence only in the presence of rye chromatin. The amplified sequence shares a low level of homology to wheat and barley, as judged by the low strength of hybridization of the sequence to restriction digests of genomic DNA. Genetic analysis showed that the amplified sequence was present on every rye chromosome and not restricted to either the proximal or distal part of the 1RS arm. In situ hybridization studies using the amplified product as probe also showed that the sequence was dispersed throughout the rye genome, but that the copy number was greatly reduced, or the sequence was absent at both the centromere and the major sites of heterochromatin (telomere and nucleolar organizing region). The probe, using both Southern blot and in situ hybridization analyses, hybridized at a low level to wheat chromosomes, and no hybridizing restriction fragments could be located to individual wheat chromosomes from the restriction fragment length polymorphism (RFLP) profiles of wheat aneuploids. The disomic addition lines of rye chromosomes to wheat shared a similar RFLP profile to one another. The amplified sequence does not contain the RIS 1 sequence and therefore represents an as yet undescribed dispersed repetitive sequence. The specificity of the amplification primers is such that they will provide a useful tool for the rapid detection of rye chromatin in a wheat background. Additionally, the relatively low level of cross-hybridization to wheat chromatin should allow the sequence to be used to analyse the organization of rye euchromatin in interphase nuclei of wheat lines carrying chromosomes, chromosome segments or whole genomes derived from rye.  相似文献   

15.
Breeders can force sexual hybridisation between wheat and related grass species to produce interspecific hybrids containing a dihaploid set of wheat and related chromosomes. This facilitates the introgression of desirable genes into wheat from the secondary gene pool. However, most elite European wheat varieties carry genes that suppress crossability, making the transfer of novel traits from exotic germplasm into elite wheat varieties difficult or impossible. Previous studies have identified at least five crossability loci in wheat. Here, the crossability locus with the largest effect, Kr1 on chromosome arm 5BL, was fine-mapped by developing a series of recombinant substitution lines in which the genome of the normally non-crossable wheat variety ‘Hobbit sib’ carries a recombinant 5BL chromosome arm containing segments from the crossable variety ‘Chinese Spring’. These recombinant lines were scored for their ability to cross with rye over four seasons. Analysis revealed at least two regions on 5BL affecting crossability, including the Kr1 locus. However, the ability to set seed is highly dependent on prevailing environmental conditions. Typically, even crossable wheat lines exhibit little or no seed set when crossed with rye in winter, but show up to 90% seed set from similar crosses made in summer. By recombining different combinations of the two regions affecting crossability, wheat lines that consistently exhibit up to 50% seed set, whether crossed in the UK winter or summer conditions, were generated, thus creating a very important tool for increasing the efficiency of alien wheat transfer programmes.  相似文献   

16.
Summary Genetic maps of chromosomes 3A, 3B and 3D of wheat and 3R of rye were developed using 22 DNA probes and two isozyme marker systems. Analysis of the 49 loci mapped showed extreme clustering around the centromere in all four maps, with large gaps in the distal chromosome regions, which is interpreted as being due to strong localisation of recombination towards the ends of the wheat and rye chromosomes. In the centromeric regions gene orders are highly conserved between the three wheat genomes and the rye genome. However, the unpredictable behaviour of the DNA clones that map in distal chromosome locations may indicate that the genomes are diverging most rapidly in the regions of higher recombination. A comparison of cDNA and genomic probes showed the latter to be much more efficient for revealing RFLP. Some classes of gDNA clones, i.e. chromosome-specific sequences and those hybridizing in a non-homoeologous manner, were seen to be most polymorphic. Correlations between map locations and RFLP levels showed no clear relationship. In addition to anonymous DNA clones, the locations of known function clones, sedoheptulose-1,7-bisphosphatase (XSbp), carboxypeptidase I (XCxp1) and a bZIP protein (XEmbp), were ascertained along with those for two isozyme loci, Mal-1 and Est-5.  相似文献   

17.
P. K. Gupta 《Genetica》1971,42(2):199-213
The work on methods for determining the homoeologous relationship between wheat and rye chromosomes has been reviewed. The results obtained for rye chromosomes belonging to different homoeologous groups have been discussed. It is proposed that chromosome 3R of Lee et al. (1969) should be designated as 1R/3R. It is pointed out that homoeology of all seven rye chromosomes may not be known in the future also, due to translocations. It is, therefore, suggested that Secale montanum should be used instead of S. cereale. Future lines of work have been suggested.  相似文献   

18.
Summary Rye (Secale cereale cv. Prolific 2n=14 and 2n =14 + 2B was crossed onto hybrids between barley (Hordeum vulgare 2n = 14) and wheat (Triticum aestivum 2n= 42). Pollinated florets were injected with GA3 to promote fertilization and hybrid embryo development. At 16 days after pollination the watery caryopses were removed, embryos dissected and cultured on a modified B5 medium. Approximately 20% of the cultured embryos produced both roots and coleoptile and developed into viable seedlings. Viable seeds were also obtained at a low frequency from the same cross combinations. The hybrids were wheat-like except for the hairy neck characteristic of rye. There were 35 chromosomes in somatic tissue; 21 wheat, 7 barley and 7 rye. The rye chromosomes were distinguishable by their larger size and terminal C-bands. A lower seed set was obtained using pollen from rye plants with 2n=14 + 2B chromosomes than from plants without B chromosomes.Contribution No. 577, Ottawa Research Station  相似文献   

19.
Higher plants grown in vitro are very seldom fully autotrophic. Therefore, such cultures are usually supplied with exogenous sugars. However, at higher sugar concentration a decrease in dry matter accumulation is observed which can be explained by a decrease in osmotic potential of the medium.To test this explanation a series of experiments with mannitol, a sugar alcohol often used for simulation of osmotic stress, were performed with excised wheat embryos, rape seedlings and potato stem segments grown in vitro. As the presence of mannitol in the medium caused a significant decrease in dry matter accumulation, the content of mannitol in the shoot tissues was determined using HPLC analysis to estimate the uptake and transport of mannitol from roots to shoots. Mannitol contents up to 30% of dry weight in wheat and 20% in rape and potato shoots were found, indicating that mannitol is easily taken up by in vitro plants and transported to shoots. There were no large changes in the content of glucose, fructose and sucrose caused by the presence of mannitol in the tissues. These data show that mannitol can not be used as an inert osmoticum in in vitro studies.  相似文献   

20.
The glyoxylate shunt enzymes, isocitrate lyase and malate synthase, were present at high levels in mycelium grown on acetate as sole source of carbon, compared with mycelium grown on sucrose medium. The glyoxylate shunt activities were also elevated in mycelium grown on glutamate or Casamino Acids as sole source of carbon, and in amino acid-requiring auxotrophic mutants grown in sucrose medium containing limiting amounts of their required amino acid. Under conditions of enhanced catabolite repression in mutants grown in sucrose medium but starved of Krebs cycle intermediates, isocitrate lyase and malate synthase levels were derepressed compared with the levels in wild type grown on sucrose medium. This derepression did not occur in related mutants in which Krebs cycle intermediates were limiting growth but catabolite repression was not enhanced. No Krebs cycle intermediate tested produced an efficient repression of isocitrate lyase activity in acetate medium. Of the two forms of isocitrate lyase in Neurospora, isocitrate lyase-1 constituted over 80% of the isocitrate lyase activity in acetate-grown wild type and also in each of the cases already outlined in which the glyoxylate shunt activities were elevated on sucrose medium. On the basis of these results, it is concluded that the synthesis of isocitrate lyase-1 and malate synthase in Neurospora is regulated by a glycolytic intermediate or derivative. Our data suggest that isocitrate lyase-1 and isocitrate lyase-2 are the products of different structural genes. The metabolic roles of the two forms of isocitrate lyase and of the glyoxylate cycle are discussed on the basis of their metabolic control and intracellular localization.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号