首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

We have previously shown that many chronic, inflammatory diseases are accompanied, and possibly partly caused or exacerbated, by various coagulopathies, manifested as anomalous clots in the form of ‘dense matted deposits’. More recently, we have shown that these clots can be amyloid in nature, and that the plasma of healthy controls can be induced to form such clots by the addition of tiny amounts of bacterial lipopolysaccharide or lipoteichoic acid. Type 2 diabetes (T2D) is also accompanied by raised levels of LPS.

Methods

We use superresolution and confocal microscopies to investigate the amyloid nature of clots from healthy and T2D individuals.

Results

We show here, with the established stain thioflavin T and the novel stains Amytracker? 480 and 680, that the clotting of plasma from type 2 diabetics is also amyloid in nature, and that this may be prevented by the addition of suitable concentrations of LPS-binding protein.

Conclusion

This implies strongly that there is indeed a microbial component to the development of type 2 diabetes, and suggests that LBP might be used as treatment for it and its sequelae.
  相似文献   

2.
Canine endothelin-2: cDNA sequence for the mature peptide.   总被引:1,自引:1,他引:1       下载免费PDF全文
  相似文献   

3.
Characterized as a peripheral metabolic disorder and a degenerative disease of the central nervous system respectively, it is now widely recognized that type 2 diabetes mellitus (T2DM) and Alzheimer's disease (AD) share several common abnormalities including impaired glucose metabolism, increased oxidative stress, insulin resistance and amyloidogenesis. Several recent studies suggest that this is not an epiphenomenon, but rather these two diseases disrupt common molecular pathways and each disease compounds the progression of the other. For instance, in AD the accumulation of the amyloid-beta peptide (Aβ), which characterizes the disease and is thought to participate in the neurodegenerative process, may also induce neuronal insulin resistance. Conversely, disrupting normal glucose metabolism in transgenic animal models of AD that over-express the human amyloid precursor protein (hAPP) promotes amyloid-peptide aggregation and accelerates the disease progression. Studying these processes at a cellular level suggests that insulin resistance and Aβ aggregation may not only be the consequence of excitotoxicity, aberrant Ca2+ signals, and proinflammatory cytokines such as TNF-α, but may also promote these pathological effectors. At the molecular level, insulin resistance and Aβ disrupt common signal transduction cascades including the insulin receptor family/PI3 kinase/Akt/GSK3 pathway. Thus both disease processes contribute to overlapping pathology, thereby compounding disease symptoms and progression.  相似文献   

4.
Elucidating the structure and biosynthesis of neuromelanin (NM) would be an important step towards understanding its putative role in the pathogenesis of Parkinson’s disease. A useful complement to studies aimed at unraveling the origin and properties of this essentially insoluble natural substance is the preparation of synthetic derivatives that resemble NM. With this aim in mind, water-soluble conjugates between dopamine-derived melanin and bovine serum albumin (BSA) were synthesized. Melanin–BSA adducts were prepared with both eumelanic oligomers obtained through the oxidative polymerization of dopamine and pheomelanic oligomers obtained under the same conditions from dopamine and cysteine. Iron ions were added during the synthesis to understand the interaction between the pigment and this metal ion, as the NM in neurons in several human brain regions contains significant amounts of iron. The structures of the conjugates were analyzed by 1H NMR spectroscopy and controlled proteolysis/MS experiments. The binding of iron(III) ions was evaluated by ICP analysis and EPR spectroscopy. The EPR signal from bound iron(III) indicated high-spin octahedral sites and, as also seen for NM, the signal is coupled to a signal from a radical associated with the melanic components of the conjugates. However, the intensity of the EPR signal from iron suggested a reduced fraction of the total iron, indicating that most of the iron is strongly coupled in clusters within the matrix. The amount of paramagnetic, mononuclear iron(III) was greater in the pheomelanin–BSA conjugates, suggesting that iron clustering is reduced in the sulfur-containing pigment. Thus, the melanin–BSA conjugates appear to be good models for the natural pigment.  相似文献   

5.
Blood glucose concentrations are maintained by insulin secreted from beta-cells located in the islets of Langerhans. There are approximately 2000 beta-cells per islet, and approximately one million islets of Langerhans scattered throughout the pancreas. The islet in type 2 diabetes mellitus (T2D) has deficient beta-cell mass due to increased beta-cell apoptosis and islet amyloid derived from islet amyloid polypeptide (IAPP). Accumulating evidence implicates toxic IAPP oligomers in the mediation of beta-cell apoptosis in T2D. Humans, monkeys, and cats express an amyloidogenic toxic form of IAPP and spontaneously develop diabetes characterized by islet amyloid deposits. However, longitudinal studies of islet pathology in humans are impossible, and studies in nonhuman primates and cats are costly and impractical. Rodent IAPP is not amyloidogenic, thus commonly used rodent models of diabetes do not recapitulate islet pathology in humans. To investigate the diabetogenic role of human IAPP (h-IAPP), several mouse models and, more recently, a rat model transgenic for h-IAPP have been developed. Studies in these models have revealed that the toxic effect of h-IAPP on beta-cell apoptosis demonstrates a threshold-dependent effect. Specifically, increasing h-IAPP transgene expression by breeding or induction of insulin resistance leads to increased beta-cell apoptosis and diabetes. These transgenic rodent models for h-IAPP provide an opportunity to elucidate the mechanisms responsible for h-IAPP-induced beta-cell apoptosis further and to test novel approaches to the prevention and treatment of T2D.  相似文献   

6.
7.
Systemic pools of ATP are elevated in individuals homozygous for cystic fibrosis (CF) as evidenced by elevated blood and plasma ATP levels. This elevated ATP level seems to provide benefit in the presence of advanced solid tumors (Abraham et al., Nature Medicine 2(5):593–596, 1996). We published in this journal a paper showing that IV ATP can elevate the depleted ATP pools of advanced cancer patients up to levels found in CF patients with subsequent clinical, biochemical, and quality of life (QOL) improvements (Rapaport et al., Purinergic Signalling 11(2): 251–262, 2015). We hypothesize that the elevated ATP levels seen in CF patients may be benefiting CF patients in another way: by improving their survival after contracting COVID-19. We discuss here the reasoning behind this hypothesis and suggest how these findings might be applied clinically in the general population.  相似文献   

8.
Identifying cis-regulatory elements is important to understanding how human pancreatic islets modulate gene expression in physiologic or pathophysiologic (e.g., diabetic) conditions. We conducted genome-wide analysis of DNase I hypersensitive sites, histone H3 lysine methylation modifications (K4me1, K4me3, K79me2), and CCCTC factor (CTCF) binding in human islets. This identified ~18,000 putative promoters (several hundred unannotated and islet-active). Surprisingly, active promoter modifications were absent at genes encoding islet-specific hormones, suggesting a distinct regulatory mechanism. Of 34,039 distal (nonpromoter) regulatory elements, 47% are islet unique and 22% are CTCF bound. In the 18 type 2 diabetes (T2D)-associated loci, we identified 118 putative regulatory elements and confirmed enhancer activity for 12 of 33 tested. Among six regulatory elements harboring T2D-associated variants, two exhibit significant allele-specific differences in activity. These findings present a global snapshot of the human islet epigenome and should provide functional context for noncoding variants emerging from genetic studies of T2D and other islet disorders.  相似文献   

9.
Mutations in the gene encoding seipin cause Berardinelli-Seip congenital lipodystrophy 2, with symptoms including near-absence of adipose tissue and altered glucose tolerance. Radiation hybrid analysis localized the seipin gene (Bscl2) in rat to a major quantitative trait locus in rat chromosome 1 linked to glucose intolerance in the Goto-Kakizaki (GK) rat model of Type 2 diabetes. We determined the genomic organization of Bscl2 and screened coding exons and flanking intron sequences for mutations in GK, Wistar and Brown Norway rats, as well as in the Otsuka Long-Evans Tokushima Fatty (OLETF) diabetic rat. Two silent single nucleotide polymorphisms that were identified also were found in non-diabetic rat strains. We conclude that mutations in the gene for seipin are unlikely to contribute to diabetes in GK and OLETF rats.  相似文献   

10.
11.
首次构建了能表达犬冠状病毒纤突糖蛋白(CCVS1)的重组犬2型腺病毒(CAV-2)。用RT-PCR方法从CCVDXMV株细胞培养物中扩增出编码S糖蛋白A、B、C和D4个抗原位点的基因片段S1,将其克隆到pVAX1中,然后将含有CCVS1基因的完整表达盒(CMV-S1-PolyA)进一步定向克隆到含有CAV-2E3区的穿梭质粒pVAXE3中,构建出pVAX△E3S1。通过SalⅠ NruⅠ双酶切pVAX△E3S1回收含有目的基因的表达盒,将其克隆入含有CAV-2全基因组的骨架质粒pPoly2-CAV-2中,获得重组质粒pCAV-2-CCV-S1。ClaⅠ AscⅠ酶切pCAV-2-CCV-S1释放重组基因组,转染MDCK细胞,获得了重组病毒CAV-2-S1。该重组病毒在MDCK细胞上能产生典型的腺病毒细胞病变。通过mRNA水平和Westernblot检测,证实重组病毒能表达CCVS1蛋白。动物免疫试验表明,该重组病毒可以有效地诱导免疫犬产生抗CCV和CAV-2抗体。  相似文献   

12.
Islet amyloid polypeptide (a.k.a. IAPP, amylin) is a 37 amino acid hormone that has long been associated with the progression of type II diabetes mellitus (TIIDM) disease. The endocrine peptide hormone aggregatively misfolds to form amyloid deposits in and around the pancreatic islet β-cells that synthesize both insulin and IAPP, leading to a decrease in β-cell mass in patients with the disease. Extracellular IAPP amyloids induce β-cell death through the formation of reactive oxygen species, mitochondrial dysfunction, chromatin condensation, and apoptotic mechanisms, although the precise roles of IAPP in TIIDM are yet to be established. Here we review aspects of the normal physiological function of IAPP in glucose regulation together with insulin, and its misfolding which contributes to TIIDM, and may also play roles in other pathologies such as Alzheimer's and heart disease. We summarize information on expression of the IAPP gene, the regulation of the hormone by post-translational modifications, the structural properties of the peptide in various states, the kinetics of misfolding to amyloid fibrils, and the interactions of the peptide with insulin, membranes, glycosaminoglycans, and nanoparticles. Finally, we describe how basic research is starting to have a positive impact on the development of approaches to circumvent IAPP amyloidogenesis. These include therapeutic strategies aimed at stabilizing non-amyloidogenic states, inhibition of amyloid growth or disruption of amyloid fibrils, antibodies directed towards amyloid structures, and inhibition of interactions with cofactors that facilitate aggregation or stabilize amyloids.  相似文献   

13.
We have cloned and sequenced a human islet amyloid polypeptide (IAPP) cDNA. A secretory 89 amino acid IAPP protein precursor is predicted from which the 37 amino acid IAPP molecule is formed by amino- and carboxyterminal proteolytic processing. The IAPP peptide is 43-46% identical in amino acid sequence to the two members of the calcitonin gene-related peptide (CGRP) family. Evolutionary conserved proteolytic processing sites indicate that similar proteases are involved in the maturation of IAPP and CGRP and that the IAPP amyloid polypeptide is identical to the normal proteolytic product of the IAPP precursor. A synthetic peptide corresponding to a carboxyteminal fragment of human IAPP is shown to spontaneously form amyloid-like fibrils in vitro. Antibodies against this peptide cross-react with IAPP from species that develop amyloid in pancreatic islets in conjunction with age-related diabetes mellitus (human, cat, racoon), but do not cross-react with IAPP from other tested species (mouse, rat, guinea pig, dog). Thus, a species-specific structural motif in the putative amyloidogenic region of IAPP is associated with both amyloid formation and the development of age-related diabetes mellitus. This provides a new molecular clue to the pathogenesis of this disease.  相似文献   

14.
15.
Unlike most other mammalian cells, beta-cells of Langerhans constitutively express cyclooxygenase (COX)-2 rather than COX-1. COX-2 is also constitutively expressed in type 1 diabetes (T1D) patients' periphery blood monocytes and macrophage. To understand the role of COX-2 in the beta-cell, we investigated COX-2 expression in beta-cells and islet infiltrates of NOD and BALB/c mice using fluorescence immunohistochemistry and cytochemical confocal microscopy and Western blotting. Immunostaining showed that COX-2 is expressed in islet-infiltrating macrophages, and that the expression of insulin and COX-2 disappeared concomitantly from the beta-cells when NOD mice progressed toward overt diabetes. Also cultured INS-1E cells coexpressed insulin and COX-2 but clearly in different subcellular compartments. Treatment with celecoxib increased insulin release from these cells in a dose-dependent manner in glucose concentrations ranging from 5 to 17 mM. Excessive COX-2 expression by the islet-infiltrating macrophages may contribute to the beta-cell death during insulitis. The effects of celecoxib on INS-1E cells suggest that PGE(2) and other downstream products of COX-2 may contribute to the regulation of insulin release from the beta-cells.  相似文献   

16.
17.
We used a series of deletion mutations in the untranslated leader region of human immunodeficiency virus type 2 (HIV-2) to seek cis-acting packaging signals. Sequences between the 5' major splice donor and the gag initiation codon, where such signals have been identified in HIV-1, appear to make a measurable but very minor contribution to genomic RNA packaging, and deletions here had little effect on viral replication in vitro. Immediately 5' to the splice donor, two regions were identified which, when deleted, caused a significant replication defect. The most proximal of these to the splice donor demonstrated a phenotype consistent with its being a major cis-acting packaging signal in HIV-2.  相似文献   

18.
The ST2 gene is a member of the IL-1 receptor family and is hypothesized to be involved in helper T cell function, but its functional ligand and physiological role remain unknown. We have cloned the human ST2L cDNA that encodes a distinct type of membrane-bound ST2 protein. The predicted 556-amino-acid sequence showed 67% identity to the mouse ST2L protein. The human ST2 gene (IL1RL1) contains 13 exons and spans 40 kb in length. Its exon-intron organization was elucidated from a registered human genomic sequence derived from chromosome 2q, which contains three other genes belonging to the IL-1 receptor family in an approximately 202-kb genomic region. The tissue distribution of ST2 expression was examined by RT-PCR, and the soluble form (ST2, IL1RL1-a) and ST2L (IL1RL1-b) appear to be expressed differentially. We also established stable transfectants of a human glioblastoma cell line, T98G, that express human ST2L constitutively, and we confirmed cell-surface expression of human ST2L protein on the transfectants.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号