首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
4.
Glutamate decarboxylase (GAD) catalyzes the decarboxylation of glutamate to CO2 and gamma-aminobutyrate (GABA). GAD is ubiquitous in prokaryotes and eukaryotes, but only plant GAD has been shown to bind calmodulin (CaM). Here, we assess the role of the GAD CaM-binding domain in vivo. Transgenic tobacco plants expressing a mutant petunia GAD lacking the CaM-binding domain (GADdeltaC plants) exhibit severe morphological abnormalities, such as short stems, in which cortex parenchyma cells fail to elongate, associated with extremely high GABA and low glutamate levels. The morphology of transgenic plants expressing the full-length GAD (GAD plants) is indistinguishable from that of wild-type (WT) plants. In WT and GAD plant extracts, GAD activity is inhibited by EGTA and by the CaM antagonist trifluoperazine, and is associated with a CaM-containing protein complex of approximately 500 kDa. In contrast, GADdeltaC plants lack normal GAD complexes, and GAD activity in their extracts is not affected by EGTA and trifluoperazine. We conclude that CaM binding to GAD is essential for the regulation of GABA and glutamate metabolism, and that regulation of GAD activity is necessary for normal plant development. This study is the first to demonstrate an in vivo function for CaM binding to a target protein in plants.  相似文献   

5.
Tang X  Gomes A  Bhatia A  Woodson WR 《The Plant cell》1994,6(9):1227-1239
The differential expression of the petunia 1-aminocyclopropane-1-carboxylate (ACC) oxidase gene family during flower development and senescence was investigated. ACC oxidase catalyzes the conversion of ACC to ethylene. The increase in ethylene production by petunia corollas during senescence was preceded by increased ACC oxidase mRNA and enzyme activity. Treatment of flowers with ethylene led to an increase in ethylene production, ACC oxidase mRNA, and ACC oxidase activity in corollas. In contrast, leaves did not exhibit increased ethylene production or ACC oxidase expression in response to ethylene. Gene-specific probes revealed that the ACO1 gene was expressed specifically in senescing corollas and in other floral organs following exposure to ethylene. The ACO3 and ACO4 genes were specifically expressed in developing pistil tissue. In situ hybridization experiments revealed that ACC oxidase mRNAs were specifically localized to the secretory cells of the stigma and the connective tissue of the receptacle, including the nectaries. Treatment of flower buds with ethylene led to patterns of ACC oxidase gene expression spatially distinct from the patterns observed during development. The timing and tissue specificity of ACC oxidase expression during pistil development were paralleled by physiological processes associated with reproduction, including nectar secretion, accumulation of stigmatic exudate, and development of the self-incompatible response.  相似文献   

6.
7.
8.
9.
A full-length cDNA clone (LeCDPK1) from tomato (Lycopersicon esculentum) encoding a calcium-dependent protein kinase (CDPK) was isolated by screening a cDNA library from tomato cell cultures exposed to Cladosporium fulvum elicitor preparations. The predicted amino acid sequence of the cDNA reveals a high degree of similarity with other members of the CDPK family. LeCDPK1 has a putative N-terminal myristoylation sequence and presents a possible palmitoylation site. The in vitro translated protein conserves the biochemical properties of a member of the CDPK family. In addition, CDPK activity was detected in soluble and particulate extracts of tomato leaves. Basal levels of LeCDPK1 mRNA were detected by northern-blot analysis in roots, stems, leaves, and flowers of tomato plants. The expression of LeCDPK1 was rapidly and transiently enhanced in detached tomato leaves treated with pathogen elicitors and H2O2. Moreover, when tomato greenhouse plants were subjected to mechanical wounding, a transient increase of LeCDPK1 steady-state mRNA levels was detected locally at the site of the injury and systemically in distant non-wounded leaves. The increase observed in LeCDPK1 mRNA upon wounding correlates with an increase in the amount and in the activity of a soluble CDPK detected in extracts of tomato leaves, suggesting that this kinase is part of physiological plant defense mechanisms against biotic or abiotic attacks.  相似文献   

10.
11.
Cloning and expression of flavonol synthase from Petunia hybrida   总被引:10,自引:0,他引:10  
Flavonols are important co-pigments in flower colour and are also essential for pollen tube growth. In petunia, flavonol synthesis is controlled by the Fl locus. Flavonol synthase (FLS) belongs to the 2-oxoglutarate-dependent dioxygenase family. Dioxygenase gene fragments were amplified by PCR on cDNA made from FlFl and flfl flowers using degenerate primers designed from conserved dioxygenase sequences. A petunia petal cDNA library was screened for clones that hybridized more strongly to the Fl PCR products than the fl PCR products. A full-length cDNA clone identified by this screening exhibited FLS activity when expressed in yeast. FLS gene expression is developmentally regulated during flower development. Antisense expression of an FLS cDNA clone in petunia markedly reduced flavonol synthesis in petals. RFLP mapping showed that the FLS gene is linked to Fl , suggesting that Fl is the structural gene for FLS.  相似文献   

12.
Abnormal flowers are often induced by infection of certain plant pathogens, e.g. phytoplasma, but the molecular mechanisms underlying these malformations have remained poorly understood. Here, we show that infection with OY-W phytoplasma (Candidatus Phytoplasma asteris, onion yellows phytoplasma strain, line OY-W) affects the expression of the floral homeotic genes of petunia plants in an organ-specific manner. Upon infection with OY-W phytoplasma, floral morphological changes, including conversion to leaf-like structures, were observed in sepals, petals and pistils, but not in stamens. As the expression levels of homeotic genes differ greatly between floral organs, we examined the expression levels of homeotic genes in each floral organ infected by OY-W phytoplasma, compared with healthy plants. The expression levels of several homeotic genes required for organ development, such as PFG, PhGLO1 and FBP7, were significantly downregulated by the phytoplasma infection in floral organs, except the stamens, suggesting that the unique morphological changes caused by the phytoplasma infection might result from the significant decrease in expression of some crucial homeotic genes. Moreover, the expression levels of TER, ALF and DOT genes, which are known to participate in floral meristem identity, were significantly downregulated in the phytoplasma-infected petunia meristems, implying that phytoplasma would affect an upstream signaling pathway of floral meristem identity. Our results suggest that phytoplasma infection may have complex effects on floral development, resulting in the unique phenotypes that were clearly distinct from the mutant flower phenotypes produced by the knock-out or the overexpression of certain homeotic genes.  相似文献   

13.
A cDNA clone encoding a lipase that is up-regulated in senescing leaves and flower petals has been isolated by screening an expression library. The abundance of the lipase mRNA increases as flowers and leaves begin to senesce, and expression of the gene is also induced by treatment with ethylene. Transgenic Arabidopsis plants in which levels of the senescence-induced lipase protein have been reduced show delayed leaf senescence.  相似文献   

14.
Plant developmental processes involving modifications to cell wall structure, such as cell expansion, organ abscission and fruit ripening, are accompanied by increased enzyme activity and mRNA abundance of endo-1,4--glucanases (EGases). An EGase cDNA clone, Ce14, isolated from tomato (Lycopersicon esculentum) has been shown to be identical to a tomato pistil-predominant EGase cDNA, TPP18. In addition to its previously reported expression during certain stages of early pistil development, Ce14 mRNA was also detected at high levels in the growing zones of etiolated hypocotyls (about 2.5-fold less than in pistils) and in young expanding leaves (about 3.5-fold less than in pistils). The abundance of Ce14 mRNA declined precipitously in older tissues as cells became fully expanded, and was barely detectable in mature vegetative tissues. Ce14 mRNA abundance was also low in abscission zones, and did not increase as abscission progressed. In fruit, Ce14 mRNA was present at low levels during fruit expansion, but was essentially absent during subsequent fruit development and ripening. Treatment of etiolated hypocotyls with ethylene or high concentrations of auxin sufficient to induce rapid lateral cell expansion and hypocotyl swelling also brought about an approximate doubling of Ce14 mRNA abundance, suggesting that Ce14 mRNA accumulation may be promoted directly or indirectly by ethylene. Thus, accumulation of Ce14 mRNA was found to be correlated with rapid cell expansion in pistils, hypocotyls and leaves.  相似文献   

15.
16.
17.
In many flowering plants, such as petunia (Petunia x hybrida), ethylene produced in floral organs after pollination elicits a series of physiological and biochemical events, ultimately leading to senescence of petals and successful fertilization. Here, we demonstrate, using transgenic ethylene insensitive (44568) and Mitchell Diploid petunias, that multiple components of emission of volatile organic compounds (VOCs) are regulated by ethylene. Expression of benzoic acid/salicylic acid carboxyl methyltransferase (PhBSMT1 and 2) mRNA is temporally and spatially down-regulated in floral organs in a manner consistent with current models for post-pollination ethylene synthesis in petunia corollas. Emission of methylbenzoate and other VOCs after pollination and exogenous ethylene treatment parallels a reduction in PhBSMT1 and 2 mRNA levels. Under cyclic light conditions (day/night), PhBSMT mRNA levels are rhythmic and precede emission of methylbenzoate by approximately 6 h. When shifted into constant dark or light conditions, PhBSMT mRNA levels and subsequent methylbenzoate emission correspondingly decrease or increase to minimum or maximum levels observed during normal conditions, thus suggesting that light may be a more critical influence on cyclic emission of methylbenzoate than a circadian clock. Transgenic PhBSMT RNAi flowers with reduced PhBSMT mRNA levels show a 75% to 99% decrease in methylbenzoate emission, with minimal changes in other petunia VOCs. These results implicate PhBSMT1 and 2 as genes responsible for synthesis of methylbenzoate in petunia.  相似文献   

18.
A defensin from tomato with dual function in defense and development   总被引:1,自引:0,他引:1  
Defensins are antimicrobial peptides that are part of the innate immune system, contributing to the first line of defense against invading pathogens. Defensins and defensin-like peptides are functionally diverse, disrupting microbial membranes and acting as ligands for cellular recognition and signaling. Here we show that the tomato defensin DEF2 is expressed during early flower development. Defensin mRNA abundance, peptide expression and processing are differentially regulated in developing flowers. Antisense suppression or constitutive overexpression of DEF2 reduces pollen viability and seed production. Furthermore, overexpression of DEF2 pleiotropically alters the growth of various organs and enhances foliar resistance to the fungal pathogen Botrytis cinerea. Partially purified extracts from leaves of a DEF2-overexpressing line inhibited tip growth of B. cinerea. Besides providing insights into regulation of defensin expression, these data demonstrate that plant defensins, like their animal counterparts, can assume multiple functions related to defense and development.  相似文献   

19.
The expression of a gene isolated from cDNA differential screening and encoding a lipid transfer protein, designated as SsLTP1, was analysed at the protein level in two groups of Solanum species and lines differing in cold acclimation capacity. Under control conditions, the SsLTP1 was localized in all aerial organs of S. sogarandinum and S. tuberosum plants. Western analysis of subcellular extracts indicated that the protein possesses an intracellular localization. The protein abundance was found to vary as a function of organ type, the highest levels being observed in flowers, stems, and young leaves. During low temperature treatment, no change in protein level was noticed in either the S. tuberosum cv. Irga, which displays a low capacity for cold acclimation, or in a S. sogarandinum line which has lost its cold acclimation capacity. By contrast, low temperature induced a noticeable increase in SsLTP1 level in stems and leaves of S. sogarandinum and S. tuberosum cv. Ursus plants, which are able to acclimate to cold, indicating that SsLTP1 could participate in the processes leading to freezing tolerance. In other respects, SsLTP1 accumulation was observed both in cold-acclimating and in non-acclimating Solanum species when subjected to water deficit or to salt treatment. These data indicate that SsLTP1 gene expression is regulated in an organ-dependent manner and through distinct pathways under non-freezing low temperature and during osmotic treatments.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号