首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 484 毫秒
1.
Levels of endogenous ABA and IAA were quantified during the first week of in vitro rooting of Wild Cherry (Prunus avium L.) using IBA in the culture medium. Hormones were measured in the apical, median and basal parts of the explants using an avidin-biotin based enzyme linked immunosorbent assay (ELISA), after a purification of the methanolic extracts by high-performance liquid chromatography (HPLC).Root primordia started to differentiate from day 5 at the basal part of the explants. ABA and IAA showed considerable changes and high levels were detected during the first week of culture. ABA levels increased transiently mainly in the apical part during root formation. Exogenous IBA was possibly transformed into IAA mainly in the basal part of the explants.  相似文献   

2.
Actinidia deliciosa apical shoots were cultured in MS liquid medium with different benzyladenine (BA) pulses and using cellulose plugs as support for the explants. Abscisic acid (ABA), indole-3-acetic acid (IAA) and some cytokinins (Cks) [zeatin (Z), dihydrozeatin (DHZ), zeatin riboside (ZR), dihydrozeatin riboside (DHZR), N6-isopentenyladenine (iP) and N6-isopentenyladenosine (iPR)] levels were measured in leaves from explants cultured both in the absence and in the presence of BA (4.4 μM) for 30 min, 1, 2 and 35 d. Analyses were carried out after three subcultures at the end of the multiplication phase and after 31 d in ex vitro conditions. A clear relationship between the endogenous content of phytohormones and the growth characteristic of kiwifruit microplants could be confirmed. Microplants with the best growth characteristic were those cultured in presence of BA during 1 d. They were characterised by higher contents of IAA than the others studied, as well as by higher values in the IAA/Cks and IAA/ABA ratios, both at the end of the multiplication phase and after the acclimatisation period. Taken all together, these ratios at the end of the multiplication phase could be used as growth indicators of A. deliciosa explants behaviour under ex vitro conditions.  相似文献   

3.
The hormonal control of axillary bud growth was investigated in cultured stem segments of Phaseolus vulgaris L. When the stem explants were excised and implanted with their apical end in a solid nutrient medium, outgrowth of the axillary buds-located at the midline of the segment-was induced. However, if indoleacetic acid (IAA) or naphthaleneacetic acid (NAA) was included in the medium, bud growth was inhibited. The exposure of the apical end to IAA also caused bud abscission and prevented the appearance of new lateral buds.In contrast to apically inserted segments, those implanted in the control medium with their basal end showed much less bud growth. In these segments, the auxin added to the medium either had no effect or caused a slight stimulation of bud growth.The IAA transport inhibitor N-1-naphthylphthalamic acid (NPA) relieved bud growth inhibition by IAA. This suggests that the effect of IAA applied at the apical end requires the transport of IAA itself rather than a second factor. With the apical end of the segment inserted into the IAA-containing medium, simultaneous basal application of IAA relieved to some extent the inhibitory effect of the apical IAA treatment. These results, together with data presented in a related article [Lim R and Tamas I (1989) Plant Growth Regul 8: 151–164], show that the polarity of IAA transport is a critical factor in the control of axillary bud growth.Of the IAA conjugates tested for their effect on axillary bud growth, indoleacetyl alanine, indoleacetic acid ethyl ester, indoleacetyl-myo-inositol and indoleacetyl glucopyranose were strongly inhibitory when they were applied to the apical end of the stem explants. There was a modest reduction of growth by indoleacetyl glycine and indoleacetyl phenylalanine. Indoleacetyl aspartic acid and indoleglyoxylic acid had no effect.In addition to IAA and its conjugates, a number of other plant growth substances also affected axillary bud growth when applied to the apical end of stem segments. Myo-inositol caused some increase in the rate of growth, but it slightly enhanced the inhibitory effect of IAA when the two substances were added together. Gibberellic acid (GA3) caused some stimulation of bud growth when the explants were from younger, rather than older plants. The presence of abscisic acid (ABA) in the medium had no effect on axillary bud growth. Both kinetin and zeatin caused some inhibition of axillary buds from younger plants but had the opposite effect on buds from older ones. Kinetin also enhanced the inhibitory effect of IAA when the two were applied together.In conclusion, axillary buds of cultured stem segments showed great sensitivity to auxins and certain other substances. Their growth responded to polarity effects and the interaction among different substances. Therefore, the use of cultured stem segments seems to offer a convenient, sensitive and versatile test system for the study of axillary bud growth regulation.  相似文献   

4.
Summary N6-benzyl-adenine (BA) enhanced phyllogenesis and axillary bud development of Paeonia suffruticosa during in vitro culture allowing good propagation while N6-(2isopentenyl)adenine (iP) did not. During the first five days of culture, the mitotic activity of BA-treated explants was higher than in the iP-treated ones. High BA levels were detected in the BA-treated explants, and this was correlated with the absence of or the low indole-3-acetic acid (IAA) content. The low iP levels measured in iP-treated explants were correlated with high endogenous IAA content; the new cytokinin / auxin ratio could explain the lack of axillary buds and the development of only one leaf. Abscisic acid (ABA) was detected neither in the controls nor in the cytokinin-treated explants during the first week. However, intensive restoration of ABA accumulation was observed in controls from the third week onwards. Both BA and iP-treated explants accumulated less ABA than the controls but this hormone appeared later in the BA-treated explants than in the iP-treated ones.Abbreviations ABA abscisic acid - BA N6-benzyl-adenine - BHT butyl-hydroxy-toluene - ELISA enzyme linked immunosorbent assay - FM fresh mass - HPLC high performance liquid chromatography - IAA indole-3-acetic acid - iP N6-(2-isopentenyl)adenine - MI mitotic index - 9RBA 9-ß-D-ribofuranosyl-BA - 9RiP 9-ß-Dribofuranosyl-iP - 9RZ 9-ß-D-ribofuranosyl-zeatin - Z zeatin  相似文献   

5.
Potato plants ( Solanum tuberosum L. ev. Ostara) were grown in water culture and the growth rate of individual tubers was measured daily or at two day intervals. Tubers of different growth rate and/or different age (days after tuberization) were harvested and analysed for indolylacetic acid (IAA) and abscisic acid (ABA). Within individual tubers the IAA content decreases from the apical to the basal part of the tuber. Tuber age and corresponding fresh weight are negatively correlated with the endogenous IAA content. If, however, individual tubers of comparable age but different growth rates are compared, a significant positive correlation between growth rate and IAA content is revealed, while ABA showed a significant negative correlation with growth rate. Removal of all fast-growing tubers from individual plants causes an increase in the growth rate of the remaining tubers within 3–4 days. This coincides with a particularly steep increase in IAA content. The data support the idea that endogenous IAA content may be one factor responsible for controlling the growth rate ("sink-activity ") of individual tubers.  相似文献   

6.
The effects of the auxins 2,4-D, NAA and IAA either alone or in combination with kinetin or BA were investigated to assess the morphogenetic potential of leaf, root and hypocotyl explants of Digitalis thapsi. Calluses were obtained from the three explants in basal medium without the addition of growth regulators and in leaves, the calluses formed roots. Application of 2,4-D, NAA or BA increased callus formation. The presence of NAA induced root formation and that of BA induced shoot formation via callus interphase. Indole-3-acetic acid alone only induced the generation of roots in the hypocotyl callus. Kinetin was ineffective in all the explants tested. Combinations of NAA with kinetin or BA were more effective in inducing organogenesis in leaf explants. Optimum responses were obtained in hypocotyl and root explants by using IAA in combination with BA, the highest rate of shoot regeneration being observed in hypocotyl explants.Rooting of the differentiated shoots was readily achieved in media without growth regulators. Regenerated plantlets were transferred to soil and grew with a survival rate of 70%.Abbreviations BA benzyladenine - 2,4-D 2,4-dichlorophenoxyacetic acid - IAA indoleacetic acid, Kin-kinetin - NAA naphthaleneacetic acid  相似文献   

7.
The concentrations of indole-3-acetic acid (IAA), cytokinins (CK) and abscisic acid (ABA) were measured in buds of different regions (main stem and lateral branches) of Lupinus angustifolius L. (cv. Merrit) and at different stages in the development of branches. In lupin, branching patterns are the result of discrete regions of axillary branches (upper, middle and basal) which elongate at much different rates. Early in development only the main shoot elongates, followed usually by basal branch growth and then rapid upper branch growth. Branches in the middle of the main stem grow only weakly or fail to develop. Levels of IAA were generally high in the apical buds of slowly growing branches and low in buds from strongly growing branches, whereas CK levels showed the opposite relationship. CK:IAA ratio showed a closer relationship with the rate of growth of a particular branch better than the levels of either CK or IAA alone. During early stages of growth ABA concentration did not follow the rate of branch growth. However, later in development, where growth did not closely match the ratio of CK:IAA, ABA level showed a strong negative relationship with growth. A significant decrease in ABA was associated with continued strong growth of the main stem apex following a decline in CK:IAA ratio. Overall, the best relationship between the level of growth factors in apical buds and branching pattern in lupin was the ratio of CK:IAA, implying that high CK:IAA at a given bud would promote growth. ABA level appeared to play a secondary role, as a growth inhibitor.  相似文献   

8.
Summary Leaf explants of Sinningia speciosa were cultured in vitro on Murashige and Skoog (MS) basal medium with various growth substances in order to regenerate shoots. On MS medium supplemented with indoleacetic acid (IAA) and kinetin, 80% of the explants produced green callus and 25 to 30 shoots with roots per explant. On MS supplemented with IAA and N6 benzyladenine (BA), 80% of the explants produced green callus and 40 to 50 shoots per explant but lacked roots. After 3–4 mo., these shoots were removed from the initial explants and transferred separately onto MS supplemented with indolebutyric acid for their elongation and successive rooting (3 mo.). Histological studies showed that the callus was associated with mesophyll cell layers, primarily with the spongy parenchyma. The shoots regenerated at the callus surface and were associated with newly differentiated vascular areas. Recurrent regenerations were obtained from leaf explants or apical meristems excised from shoots of the previous subcultures. These explants, as compared to initial cultures, had a high frequency of regeneration and also produced more shoots per explant. Chromosome numbers of root tip cells of the mother plant and of all in vitro-regenerated plants remained constant: 2n=26.  相似文献   

9.
Osmotic stress and endogenous hormone levels may have a role in shoot organogenesis, but a systematic study has not yet to investigate the links. We evaluated the changes of the endogenous indole-3-acetic acid (IAA) and abscisic acid (ABA) levels in rice (Oryza sativa L. cv. Tainan 5) callus during shoot organogenesis induced by exogenous plant growth regulator treatments or under osmotic stress. Non-regenerable callus showed low levels of endogenous ABA and IAA, with no fluctuation in level during the period evaluated. The addition of 100 μM ABA or 2 mM anthranilic acid (IAA precursor) into Murashige and Skoog basal induction medium containing 10 μM 2,4-D enhanced the regeneration frequency slightly, to 5 and 35%, respectively, and their total cellular ABA or IAA levels were increased significantly, correspondingly to the treatments. However, the regeneration frequency was greatly increased to 80% after treatment with 0.6 M sorbitol or 100 μM ABA and 2 mM anthranilic acid combined. Both treatments produced high levels of total cellular ABA and IAA at the callus stage, which was quickly decreased on the first day after transfer to regeneration medium. Thus, osmotic stress-induced simultaneous accumulation of endogenous ABA and IAA is involved in shoot regeneration in rice callus.  相似文献   

10.
1-Naphthaleneacetic acid (NAA) and 6-benzyladenine (BA) were required for in vitro callus formation at the basal edge of kiwifruit (Actinidia deliciosa [A. Chev] Liang and Ferguson, cv. Hayward) petioles. The uptake, metabolism, and concentration of NAA and indole-3-acetic acid (IAA) content were examined in the explants during the callus initiation period. After 1, 6, 12, 24, 48, and 96 h of culture in the presence of [H3]NAA, petioles were divided into apical, middle, and basal portions and analyzed. Except for a high IAA level measured at 12 h, IAA content decreased in tissues during a culture period of 96 h. NAA uptake was higher in petiolar edges than in the middle portion, and NAA was rapidly conjugated with sugars and aspartic acid inside the tissues. The amide conjugation was triggered in apical and basal portions from 12 h and in the middle part from 48 h, with α-naphthylacetylaspartic acid being the major metabolite. Free-NAA concentration in cultured petioles achieved an equilibrium with the exogenously applied NAA (0.27 μm) from 12 h, and it remained constant thereafter. The relationships between the role attributed to NAA and BA in the initiation and the maintenance of disorganized growth of callus in kiwifruit cultures are discussed. Received December 21, 1998; accepted July 20, 1999  相似文献   

11.
Different plant explants of Persian buttercup (Ranunculus asiaticus L.) were screened for callus induction and adventitious shoot regeneration on different media to establish totipotent cultures. Murashige & Skoog (MS) medium was used, supplemented with different concentrations of the following growth regulators: kinetin, benzyladenine (BA), naphthaleneacetic acid (NAA) and indoleacetic acid (IAA). Callus was induced and adventitious buds regenerated only from cotyledonary explants after 4–5 weeks. Subculture of the regenerated buds on the same basal medium in presence of gibberellic acid (GA3) and BA produced well-organized shoots. Rooting was obtained by transferring shoots to growth regulator-free MS medium. A high rate of shoot multiplication has been achieved on medium with high concentration of kinetin and long-day photoperiod. Finally the plants were successfully transferred to soil and grown in a greenhouse.  相似文献   

12.
Yokoya  Nair S.  Handro  Walter 《Hydrobiologia》1996,326(1):393-400
The role played by plant growth regulators in algae is poorly known. In order to increase the knowledge about the function of auxins and cytokinins in seaweeds, explants such as apical and intercalary segments and callus-like structures (CLS) of Grateloupia dichotoma were cultured in semi-solid or liquid artificial media ASP 12-NTA. Two auxins, indole-3-acetic acid (IAA) and 2,4-dichlorophenoxyacetic acid (2,4-D), and one cytokinin, 6-benzylaminopurine (BA), at concentrations of 0.5 and 5.0 mg l–1 were tested. Moreover, IAA and BA were tested together at concentrations of 1:5 and 5:1 mg l–1. All treatments promoted the growth of CLS in intercalary segments; CLS from apical segments were significantly higher in treatments with 2,4-D or IAA:BA (1:5 mg 1–1). The morphogenetic responses for auxins and BA were opposite, auxins inhibited while BA promoted the formation of lateral branches; however, auxins promoted the elongation of such branches. The process of plant regeneration observed on CLS was stimulated significantly by treatment with high concentration of BA or IAA:BA (1:5 mg 1–1) in semi-solid and liquid media. The growth of upright axes was stimulated significantly by treatment with 2,4-D in semi-solid medium, and IAA:BA (1:5 mg l–1) in liquid medium. These results show the importance that plant growth regulators could have in the control of growth, morphogenetic processes and micropropagation in red algae.This paper is part of the PhD thesis of NSY.  相似文献   

13.
Hormonal and histological studies related to in vitro banana bud formation   总被引:3,自引:0,他引:3  
Shoot apices of Musa subgroup AAA `Grande Naine' were used for in vitro culture establishment. The endogenous hormone levels and their effects on bud formation were evaluated during a 75-day period. Cytokinins, IAA and ABA were separated by HPLC and quantified by means of ELISA. Enzymatic degradation of IAA was determined by the colorimetric method. Explants were maintained on establishment medium for 60 days. The endogenous cytokinins were higher in the basal portion of the explant. Subculture to proliferation medium (65 to 75 days) resulted in a substantial increase of cytokinins in the basal portion and in a decline in the apical portion. 2iP was the predominant cytokinin in the tissue. The endogenous level of IAA and the IAA/cytokinin ratio decreased after the 65th day of culture. The level of ABA was reduced from the time of inoculation up to the 75th day of culture. Histological analysis indicated that buds formed at the leaf base at the 65th day of culture. This revised version was published online in August 2006 with corrections to the Cover Date.  相似文献   

14.
S. T. C. Wright 《Planta》1980,148(4):381-388
Abscisic acid (ABA) inhibits the production of ethylene induced by water stress in excised wheat leaves and counteracts the stimulatory effect of 6-benzyladenine (BA) on this process. The stimulatory effect of BA and the inhibitory effect of ABA were equally pronounced whether external or endogenous ethylene levels were determined. When leaves were sprayed or floated on solutions of BA, indole-3-acetic acid (IAA), gibberellic acid (GA3), or ABA, the relative activities of these growth regulators on stress-induced ethylene at 10-4 mol l-1 were BA>IAA >GA3>controls>ABA. In non-stressed leaves, however, where the levels of ethylene produced were 2–20 times smaller, the relative activities were IAA >BA>GA3>controls>ABA. The effects of BA and ABA spray treatment on water stress induced ethylene were closely similar whether the solutions were applied 2 or 18 h prior to the initiation of water stress. The relationships between the levels of endogenous growth regulators in the plant and ethylene release induced by water stress are discussed.Abbreviations BA 6-benzyladenine - IAA indole-3-acetic acid - GA3 gibberellic acid - ABA abscisic acid - GLC gas-liquid chromatography - leaf leaf water potential  相似文献   

15.
The effect of phytohormones on the breaking of dormancy of axillary buds in Salix pseudolasiogyne and their subsequent proliferation from nodal explants were examined. Nodal explants obtained from a 20–year-old S. pseudolasiogyne tree were cultured either on woody plant basal medium (WPM) or WPM supplemented with benzyladenine (BA, 2.2/4.4 μM), zeatin (1.1/2.2 μM), gibberillic acid (GA3, 2.9 and 14.5 μM), and GA3 + BA (2.9 + 4.4 μM). Although axillary shoots developed in all the media, a higher percentage bud break occurred on BA supplemented media. To corroborate the results, endogenous levels of cytokinins [Cks, N 6-isopentenyladenine (iP), zeatin riboside (t-ZR), dihydrozeatinriboside (DHZR)] and abscisic acid (ABA) were determined. On BA supplemented media, the levels of zeatin type (Z-type) of Cks were higher than those of isopentenyladenine type of Ck in the explants, while the ABA level was low. Axillary shoots did not grow well and became necrotic upon subculture to fresh basal WPM. In order to improve shoot growth, they were subcultured twice at a 4-week interval on to WPM supplemented with BA (2.2/4.4 μM), GA3 (1.4 μM), or GA3 + BA (1.4 + 4.4/2.9 + 4.4 μM). Maximal shoot growth (93%) was achieved on WPM supplemented with 2.2 μM BA. Comparative analyses of endogenous Cks revealed that higher Cks (Z-type Cks) were present in actively growing shoots. Rooting was readily achieved when the shoots were subcultured to WPM without phytohormones. The rooted plants were acclimatized well upon transplantation.  相似文献   

16.
Tissue culture techniques were applied for micropropagation of the red alga Kappaphycus alvarezii in order to select the best strain and experimental system for in vitro culture. Five strains were tested: brown (BR), green (GR) and red (RD) tetrasporophytes, brown female gametophyte (BFG), and a strain originating from tetraspore germination (“Edison de Paula”, EP). The effects of three culture media were tested on callus formation, regeneration from explants and from callus in the three tetrasporophytic and EP strains: seawater enriched with half-strength of von Stosch’s (VS 50) and Guillard & Ryther’s (F/2 50) solutions, plus synthetic ASP 12-NTA medium, with or without gelling agent. Explants of the EP strain were treated with glycerol and the phytoregulators indole-3-acetic acid (IAA); 2,4-diclorophenoxyacetic acid (2,4-D); and benzylaminopurine (BA), alone or in combination. The effects of colchicine (0.01%) during 24, 48, 72 hours and 14 days were analyzed in the BFG and EP strains. The EP strain showed the highest percentage of explants forming callus and regeneration from explants in VS 50, indicating its high potential for micropropagation in comparison to the other strains. Regeneration from callus was very rare. Treatments with glycerol and IAA:BA (5:1 mg L−1) stimulated the regeneration from explants. Significant differences were observed in the percentages of regeneration of EP strain explants treated with colchicine for 14 days. Our results indicate that IAA and BA stimulated the regeneration process, and that colchicine produced explants with high potential for regeneration, being useful for improving the micropropagation of K. alvarezii.  相似文献   

17.
The effects of different plant growth regulators on in vitro adventitious shoot formation in Virginia pine (Pinus virginiana Mill.) zygotic embryo explants were quantitatively evaluated. Using Tang and Ouyang (1999) (TE) basal medium supplemented with 11.4 μM indole-3-acetic acid (IAA) and 2.2 μM N6-benzyladenine (BA), callus was observed after 3–6 weeks of culture. Calluses were transferred to TE basal medium supplemented with 0.49 μM indole-3-butyric acid (IBA) and 8.8 μM BA for 6–9 weeks, where they produced numerous small shoot primordia. They were then transferred to TE basal medium supplemented with 0.49 μM IBA and 4.4 μM BA to promote growth and elongation of adventitious shoots. After elongated shoots were transferred to TE medium containing 0.05 μM α-naphthaleneacetic acid (NAA) for 6 weeks, adventitious roots were formed. Regenerated plantlets were established in soil in greenhouse.  相似文献   

18.
Indole acetic acid (IAA). abscisic acid (ABA), and zeatin plus zeatin riboside (Z + ZR) were determined daily in cuttings of Lycopersicon esculentum Mill. cv. Craigella (C) and the Craigella Lateral Suppressor (CLS) mutant during the first 5 days of the root-forming process. A solid-phase enzyme immunoassay using specific anti-hormone antibodies was used following a one-step HPLC purification procedure. The hormone measurements were made in cuttings divided into 4 parts. The main variations occurred in the terminal bud and in the basal part of the hypocotyl of the two tomato varieties, i.e. significant IAA and ABA increases during the first 2 days followed by a more or less fast return to the initial values at day 4 or 5. This is probably due to the ablation of the root system. Z + ZR levels dramatically decreased in the basal part of the Craigella hypocotyl 1 day after cutting. Contrary to CLS, C hypocotyls recovered the initial high levels when roots regenerated (day 5). This is probably linked to the greater ability of roots to produce cytokinins in C plants than in CLS ones. The first step of root formation (reactivation of the pericyclic cells and formation of root primordia) corresponded to a high IAA/Z + ZR ratio in the root-forming tissue, whereas the second step (elongation of young roots) was characterized by a low ratio with low levels of hormones.  相似文献   

19.
Axenic cultures of Gracilariopsis tenuifrons (Bird et Oliveira) Fredericq et Hommersand (Gracilariales, Rhodophyta) were established in ASP12‐NTA solid medium (0.4% agar and 1.0% sucrose) supplemented with plant growth regulators to evaluate the effects on apical callus formation and plant regeneration. Indole‐3‐acetic acid (IAA), 2,4‐dichlorophenoxyacetic acid (2,4‐D) and 6‐benzylaminopurine (BA) were added individually or in combinations (IAA : BA) over a range of concentrations from 0.5 to 5 mg L?1. Growth of apical and intercalary segments was stimulated by high concentrations of 2,4‐D (5 mg L?1) and a high IAA to BA ratio (IAA : BA = 5:1 mg L?1) respectively. Apical calluses were originated from divisions of apical and cortical cells located at apical regions of thallus segments and lateral branches. Low concentration of IAA (0.5 mg L?1) or a high IAA to BA ratio (IAA : BA = 5:1 mg L?1) were the optimal treatments for inducing apical callus formation in apical segments, while high concentration of IAA (5 mg L?1) stimulated the highest callus induction rate in intercalary segments. Conversely, equal parts IAA and BA (IAA : BA = 1:1 mg L?1) and low concentration of 2,4‐D (0.5 mg L?1) stimulated growth of apical calluses from apical and intercalary segments, respectively. Two processes of regeneration were observed: direct regeneration (upright axis originated from cells of proximal region of intercalary segments) and indirect regeneration (adventitious plantlet originated from cells of apical calluses). Direct regeneration was promoted significantly by treatment with a low IAA to BA ratio (IAA : BA= 1:5 mg L?1), and treatments with IAA (0.5 mgL?1) or 2,4‐D (0.5 or 5 mg L?1) significantly stimulated the elongation of upright axis. Plant growth regulators are essential to inducing indirect regeneration, and a high concentration of IAA (5 mg L?1) and BA (5 mg L?1) were the optimal treatments for inducing the regeneration of plantlets from apical calluses in apical and intercalary segments, respectively. Regenerating plantlets grew into plants morphologically similar to those formed from germinating spores, and became fertile after 6 weeks. The results suggest that auxins and cytokinins are involved in developmental regulatory processes in G. tenuifrons. The regeneration process from calluses in species of Gracilariales was observed for the first time in the present study. The culture system described for G. tenuifrons could be useful for micropropagation and for biotechnological applications in agarophytic algae.  相似文献   

20.
In vitro plantlet regeneration systems for the seed geranium (Pelargonium x hortorum Bailey) using cotyledon, hypocotyl and root explants were optimized by studying the influence of seedling age, growth regulators and excision orientation on organogenesis. Indole-3-acetic acid combined with zeatin yielded the highest rate of shoot production on cotyledon explants (0.2–2 shoots per explant). More shoots were produced on explants cut from the most basal region of cotyledons from 2 to 4-day-old seedlings than from older seedlings or more distal cut sites. Hypocotyl explants produced the highest number of shoots, up to 40 shoots per explant, on indole-3-acetic acid (2.8–5.6 mM) + zeatin (4.6 mM) or thidiazuron (4.5 mM). Maximum shoot formation (0.3–1.4 shoots per explant) on root explants occurred when they were cultured on medium containing zeatin. Regenerated shoots rooted best on a basal medium containing no growth regulators. There were substantial differences among cultivars in shoot formation from each of the explant systems.Abbreviations BA 6-benzylaminopurine - 2,4-d 2,4-dichlorophenoxyacetic acid - IAA indole-3-acetic acid - NAA naphthaleneacetic acid - TDZ thidiazuron  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号