首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 33 毫秒
1.
1. Arrhenius plots of the glucagon-stimulated adenylate cyclase, 5'-nucleotidase, (Na+ + K+)-stimulated adenosine triphosphatase and Mg2+-dependent adenosine triphosphatase activities of control hamster liver plasma membranes exhibited two break points at around 25 and 13 degrees C, whereas Arrhenius plots of their activities in hibernating hamster liver plasma membranes exhibited two break points at around 25 and 4 degrees C. 2. A single break occurring between 25 and 26 degrees C was observed in Arrhenius plots of the activities of fluoride-stimulated adenylate cyclase, basal adenylate cyclase and cyclic AMP phosphodiesterase of liver plasma membranes from both control and hibernating animals. 3. Arrhenius plots of phosphodiesterase I activity showed a single break at 13 degrees C for membranes from control animals, and a single break at around 4 degrees C for liver plasma membranes from hibernating animals. 4. The temperature at which break points occurred in Arrhenius plots of glucagon- and fluoride-stimulated adenylate cyclase activity were decreased by about 7--8 degrees C by addition of 40 mm-benzyl alcohol to the assays. 5. Discontinuities in the Arrhenius plots of 4-anilinonaphthalene-1-sulphonic acid fluorescence occurred at around 24 and 13 degrees C for liver plasma membranes from control animals, and at around 25 and 4 degrees C for membranes from hibernating animals. 6. We suggest that in hamster liver plasma membranes from control animals a lipid phase separation occurs at around 25 degrees C in the inner half of the bilayer and at around 13 degrees C in the outer half of the bilayer. On hibernation a change in bilayer asymmetry occurs, which is expressed by a decrease in the temperature at which the lipid phase separation occurs in the outer half of the bilayer to around 4 degrees C. The assumption made is that enzymes expressing both lipid phase separations penetrate both halves of the bilayer, whereas those experiencing a single break penetrate one half of the bilayer only.  相似文献   

2.
Incubation of rat liver plasma membranes with liposomes of dioleoyl phosphatidic acid (dioleoyl-PA) led to an inhibition of adenylate cyclase activity which was more pronounced when fluoride-stimulated activity was followed than when glucagon-stimulated activity was followed. If Mn2+ (5 mM) replaced low (5 mM) [Mg2+] in adenylate cyclase assays, or if high (20 mM) [Mg2+] were employed, then the perceived inhibitory effect of phosphatidic acid was markedly reduced when the fluoride-stimulated activity was followed but was enhanced for the glucagon-stimulated activity. The inhibition of adenylate cyclase activity observed correlated with the association of dioleoyl-PA with the plasma membranes. Adenylate cyclase activity in dioleoyl-PA-treated membranes, however, responded differently to changes in [Mg2+] than did the enzyme in native liver plasma membranes. Benzyl alcohol, which increases membrane fluidity, had similar stimulatory effects on the fluoride- and glucagon-stimulated adenylate cyclase activities in both native and dioleoyl-PA-treated membranes. Incubation of the plasma membranes with phosphatidylserine also led to similar inhibitory effects on adenylate cyclase and responses to Mg2+. Arrhenius plots of both glucagon- and fluoride-stimulated adenylate cyclase activity were different in dioleoyl-PA-treated plasma membranes, compared with native membranes, with a new 'break' occurring at around 16 degrees C, indicating that dioleoyl-PA had become incorporated into the bilayer. E.s.r. analysis of dioleoyl-PA-treated plasma membranes with a nitroxide-labelled fatty acid spin probe identified a new lipid phase separation occurring at around 16 degrees C with also a lipid phase separation occurring at around 28 degrees C as in native liver plasma membranes. It is suggested that acidic phospholipids inhibit adenylate cyclase by virtue of a direct headgroup specific interaction and that this perturbation may be centred at the level of regulation of this enzyme by the stimulatory guanine nucleotide regulatory protein NS.  相似文献   

3.
A method was devised which increases the cholesterol concentration of rat liver plasma membranes by exchange from cholesterol-rich liposomes at low temperature (4 degrees C). When the cholesterol concentration of liver plasma membranes is increased, there is an increase in lipid order as detected by a decrease in mobility of an incorporated fatty acid spin probe. This is accompanied by an inhibition of adenylate cyclase activity. The various ligand-stimulated adenylate cyclase activities exhibit different sensitivities to inhibition by cholesterol, with inhibition of glucagon-stimulated greater than fluoride-stimulated greater than basal activity. The bilayer-fluidizing agent benzyl alcohol is able to reverse the inhibitory effect of cholesterol on adenylate cyclase activity in full. The thermostability of fluoride-stimulated cyclase is increased in the cholesterol-rich membranes. Elevated cholesterol concentrations abolish the lipid-phase separation occurring at 28 degrees C in native membranes as detected by an incorporated fatty acid spin probe. This causes Arrhenius plots of glucagon-stimulated adenylate cyclase activity to become linear, rather than exhibiting a break at 28 degrees C. It is suggested that the cholesterol contents of both halves of the bilayer are increased by the method used and that inhibition of adenylate cyclase ensues, owing to the increase in lipid order and promotion of protein-protein and specific cholesterol-phospholipid interactions.  相似文献   

4.
Prilocaine can increase the fluidity of rat liver plasma membranes, as indicated by a fatty acid spin-probe. This led to the activation of the membrane-bound fluoride-stimulated adenylate cyclase activity, but not the Lubrol-solubilized activity, suggesting that increased lipid fluidity can activate the enzyme. With increasing prilocaine concentrations above 10 mM, the membrane-bound fluoride-stimulated activity was progressively inhibited, even though bilayer fluidity continued to increase and the activity of the solubilized enzyme remained unaffected. Glucagon-stimulated adenylate cyclase was progressively inhibited by increasing prilocaine concentrations. Prilocaine (10 mM) had no effect on the lipid phase separation occurring at 28 degrees C and attributed to those lipids in the external half of the bilayer, as indicated by Arrhenius plots of both glucagon-stimulated adenylate cyclase activity and the order parameter of a fatty acid spin-probe. However, 10 mM-prilocaine induced a lipid phase separation at around 11 degrees C that was attributed to the lipids of the internal (cytosol-facing) half of the bilayer. It is suggested that prilocaine (10 mM) can selectively perturb the inner half of the bilayer of rat liver plasma membranes owing to its preferential interaction with the acidic phospholipids residing there.  相似文献   

5.
1. The local anaesthetic benzyl alcohol progressively activated glucagon-stimulated adenylate cyclase activity up to a maximum at 50 mM-benzyl alcohol. Further increases in benzyl alcohol concentration inhibited the activity. The fluoride-stimulated adenylate cyclase activity was similarly affected except for an inhibition of activity occurring at low benzyl alcohol concentrations (approx. 10 mM. 2. The fluoride-stimulated adenylate cyclase activity of a solubilized enzyme preparation was unaffected by any of the benzyl alcohol concentrations tested. 3. Increases in 3-phenylpropan-1-ol and 5-phenylpentan-1-ol concentrations progressively activated both the fluoride- and glucagon-stimulated adenylate cyclase activities up to a maximum, above which further increases in alcohol concentration inhibited the activities. 4. The 'break' points in Arrhenius plots of glucagon-stimulated adenylate cyclase activity in native plasma membranes, and in plasma membranes fused with synthetic dimyristoyl phosphatidylcholine so as to constitute 60% of the total lipid pool, were decreased by approx. 6 degrees C by addition of 40 mM-benzyl alcohol. This was accompanied by a fall in the associated activation energies. 6. Arrhenius plots of fluoride-stimulated adenylate cyclase activity in the presence and absence of 40 mM-benzyl alcohol were linear, although addition of benzyl alcohol caused a dramatic decrease in the associated activation energy of the reaction. 7. 5'-Nucleotidase activity was stimulated by benzyl alcohol, and the 'break' point in the Arrhenius plot of its activity was decreased by about 6 degrees C by addition of 40 mM-benzyl alcohol to the assay. 8. It is suggested that benzyl alcohol effects a fluidization of the bilayer, which is clearly demonstrated by its ability to lower the temperature of a lipid phase separation occurring at 28 degrees C in the outer half of the bilayer to around 22 degrees C. The increase in bilayer fluidity relieves a physical constraint on the membrane-bound adenylate cyclase, activating the enzyme. 9. The various inhibition phenomena are discussed in detail, together with the suggestion that the interaction between the uncoupled catalytic unit of adenylate cyclase and the lipids of the bilayer is altered on its physical coupling to the glucagon receptor.  相似文献   

6.
The effect of the hepatocarcinogen dimethylnitrosamine on rat liver plasma membrane adenylate cyclase activity and lipid fluidity was assessed. Glucagon-stimulated adenylate cyclase activity exhibited a complex response to increasing concentrations of dimethylnitrosamine, whereas fluoride-stimulated adenylate cyclase activity was progressively inhibited. Maximal inhibitory effects were observed at a concentration of 15 mM in both cases. The activity of detergent-solubilized adenylate cyclase was unaffected by dimethylnitrosamine. ESR analysis using a fatty acid spin probe showed that dimethylnitrosamine produced a marked, dose-dependent reduction in the fluidity of the plasma membrane with a maximal effect occurring at 20 mM. Dimethylnitrosamine also elevated the temperature at which the lipid phase separation occurred in rat liver plasma membranes, from 28 degrees C to 31 degrees C. The non-carcinogenic but structurally similar compound, dimethylamine hydrochloride neither inhibited adenylate cyclase nor decreased plasma membrane fluidity. It is suggested that the decrease in membrane fluidity, induced by dimethylnitrosamine, via its effects on membrane fluidity, could influence plasma membrane function and cellular regulation.  相似文献   

7.
Arrhenius plots of the fluoride-stimulated adenylate cyclase activity of rat liver plasma membranes are linear. Solubilisation using various lubrol detergents yield adenylate cyclase preparations whose Arrhenius plots reflect the physical properties of the detergent used. This suggests that the detergent is tightly bound to the enzyme and can modulate its activity.  相似文献   

8.
1. Activation of adenylate cyclase in rat liver plasma membranes by fluoride or GMP-P (NH)P yielded linear Arrheniun plots. Activation by glucagon alone, or in combination with either fluoride or GMP-P(NH)P resulted in biphasic Arrhenius plots with a well-defined break at 28.5 +/- 1 degrees C. 2. The competitive glucagon antagonist, des-His-glucagon did not activate the adenylate cyclase but produced biphasic Arrhenius plots in combination with fluoride or GMP-P(NH)P. The break temperatures and activation energies were very similar to those observed with glucagon alone, or in combination with either fluoride or GMP-P(NH)P. 3. It is concluded that although des-His-glucagon is a potent antagonist of glucagon, it nevertheless causes a structural coupling between the receptor and the catalytic unit.  相似文献   

9.
Ca2+ decreased the lipid fluidity of rat liver plasma membranes labeled with 5-nitroxide stearate, I(12,3), as indicated by the order parameter (S). These effects form a reversible, saturable process with an association constant of 1 x 10(3) M-1. Arrhenius-type plots of S indicated that the lipid phase separation, present in the external leaflet of native membranes between 28 and 19 degrees C, is perturbed by mM Ca2+ such that the high temperature onset is elevated to 32-34 degrees C. Fluoride-stimulated adenylate cyclase was similarly inhibited by Ca2+ (ID50 = 1 mM) for the enzyme in membrane-bound or solubilized states. The glucagon-stimulated activity was more sensitive to Ca2+ inhibition with an ID50 of 0.2 mM. These inhibitory effects are due neither to perturbations of glucagon binding to its receptor nor to fluidity changes, but are instead attributed to direct Ca2+-enzyme interactions. Such binding desensitizes the enzyme to fluidity alterations induced by temperature elevation or benzyl alcohol addition. With Ca2+, Arrhenius plots of glucagon-stimulated activity indicated breaks at 32 and 16 degrees C, whereas those of fluoride-stimulated activity showed one break at 17 degrees C. Without Ca2+, Arrhenius plots exhibited one break at 28 degrees C for glucagon-stimulated activity, whereas fluoride-stimulated plots were linear. We propose that Ca2+ achieves these effects through asymmetric perturbations of the membrane lipid structure.  相似文献   

10.
Adenylate cyclase activation by corticotropin (ACTH), fluoride and forskolin was studied as a function of membrane structure in plasma membranes from bovine adrenal cortex. The composition of these membranes was characterized by a very low cholesterol and sphingomyelin content and a high protein content. The fluorescent probes 1,6-diphenylhexa-1,3,5-triene (DPH) and a cationic analogue 1-[4-(trimethylamino)phenyl]-6-phenylhexa-1,3,5-triene (TMA-DPH) were, respectively, used to probe the hydrophobic and polar head regions of the bilayer. When both probes were embedded either in the plasma membranes or in liposomes obtained from their lipid extracts, they exhibited lifetime heterogeneity, and in terms of the order parameter S, hindered motion. Under all the experimental conditions tested, S was higher for TMA-DPH than for DPH but both S values decreased linearly with temperature within the range of 10 to 40 degrees C, in the plasma membranes and the liposomes. This indicated the absence of lipid phase transition and phase separation. Addition to the membranes of up to 100 mM benzyl alcohol at 20 degrees C also resulted in a linear decrease in S values. Membrane perturbations by temperature changes or benzyl alcohol treatment made it possible to distinguish between the characteristics of adenylate cyclase activation with each of the three effectors used. Linear Arrhenius plots showed that when adenylate cyclase activity was stimulated by forskolin or NaF, the activation energy was similar (70 kJ.mol-1). Fluidification of the membrane with benzyl alcohol concentrations of up to 100 mM at 12 or 24 degrees C produced a linear decrease in the forskolin-stimulated activity, that led to its inhibition by 50%. By contrast, NaF stabilized adenylate cyclase activity against the perturbations induced by benzyl alcohol at both temperatures. In the presence of ACTH, biphasic Arrhenius plots were characterized by a well-defined break at 18 degrees C, which shifted at 12.5 degrees C in the presence of 40 mM benzyl alcohol. These plots suggested that ACTH-sensitive adenylate cyclase exists in two different states. This hypothesis was supported by the striking difference in the effects of benzyl alcohol perturbation when experiments were performed below and above the break temperature. The present results are consistent with the possibility that clusters of ACTH receptors form in the membrane as a function of temperature and/or lipid phase fluidity.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

11.
1. The lipids composition of rat liver plasma membranes was substantially altered by introducing synthetic phosphatidylcholines into the membrane by the techniques of lipid substitution or lipid fusion. 40-60% of the total lipid pool in the modified membranes consisted of a synthetic phosphatidylcholine. 2. Lipid substitution, using cholate to equilibrate the lipid pools, resulted in the irreversible loss of a major part of the adenylate cyclase activity stimulated by F-, GMP-P(NH)P or glucagon. However, fusion with presonicated vesicles of the synethic phosphatidylcholines causes only small losses in adenylate cyclase activity stimulated by the same ligands. 3. The linear form of the Arrhenius plots of adenylate cyclase activity stimulated by F- or GMP-(NH)P was unaltered in all of the membrane preparations modified by substitution or fusion, with very similar activation energies to those observed with the native membrane. The activity of the enzyme therefore appears to be very insensitive to its lipid environment when stimulated by F- or gmp-p(nh)p. 4. in contrast, the break at 28.5 degrees C in the Arrhenius plot of adenylate cyclase activity stimulated by glucagon in the native membrane, was shifted upwards by dipalmitoyl phosphatidylcholine, downwards by dimyristoyl phosphatidylcholine, and was abolished by dioleoyl phosphatidylcholine. Very similar shifts in the break point were observed for stimulation by glucagon or des-His-glucagon in combination with F- or GMP-P(NH)P. The break temperatures and activation energies for adenylate cyclase activity were the same in complexes prepared with a phosphatidylcholine by fusion or substitution. 5. The breaks in the Arrhenius plots of adenylate cyclase activity are attributed to lipid phase separations which are shifted in the modified membranes according to the transition temperature of the synthetic phosphatidylcholine. Coupling the receptor to the enzyme by glucagon or des-His-glucagon renders the enzyme sensitive to the lipid environment of the receptor. Spin-label experiments support this interpretation and suggest that the lipid phase separation at 28.5 degrees C in the native membrane may only occur in one half of the bilayer.  相似文献   

12.
For a variety of ligand states, adenylate cyclase activity in the presence of Mn2+ was greater than with Mg2+. Trypsin treatment of intact hepatocytes, under conditions which destroy cell surface glucagon receptors, led to a first order loss of glucagon-stimulated adenylate cyclase activity in isolated membranes assayed in the presence of Mn2+ whether or not GTP (100 microM) was present in the assays. Arrhenius plots of basal activity exhibited a break at around 22 degrees C, those with NaF were linear and those with glucagon +/- GTP (100 microM) were biphasic with a break at around 28 degrees C. It is suggested that Mn2+ perturbs the coupling interaction between the glucagon receptor and catalytic unit of adenylate cyclase at the level of the guanine nucleotide regulatory protein. This appears to take the form of Mn2+ preventing GTP from initiating glucagon's activation of adenylate cyclase through a collision coupling mechanism.  相似文献   

13.
W E Criss  T K Pradhan  J Wolff 《Enzyme》1976,21(6):507-515
Adenylate cyclase (EC 4.6.1.1) activities were examined in membrane preparations from two rat liver cell lines (62 and 3C4) which were grown in monolayer cultures. The cells were epithelial-like in growth character. Adenylate cyclase from the line 62 was stimulated by epinephrine, Gpp(NH)p, and prostaglandins A1,A2,E1,E2, and F2alpha, but not by glucagon. Arrhenius plots of adenylate cylase activity from line 62 gave straight lines, except when epinephrine was present in the assay; epinephrine-stimulated activity gave a distinct break at 20 degrees C. Adenylate cyclase activity in line 3C4 was stimulated by glucagon ten times greater than by epinephrine. It was responsive to Gpp(NH)p and all the prostaglandins. Arrhenius plots of adenylate cyclase activity of line 3C4 always gave straight line curves. Prostaglandins flattened the straight line curves (allowed temperature independence) of adenylate cyclase activity in membranes from both cell lines.  相似文献   

14.
The cholesterol content of rat liver plasma membranes was manipulated using either cholesterol-free or cholesterol-enriched liposomes. Removal of cholesterol from the membranes led to a marked increase in 5'-nucleotidase activity. However, increase in cholesterol content failed to exert any significant effect on 5'-nucleotidase activity. Arrhenius plots of the activity of the native enzyme exhibited a break at around 28 degrees C with the activation energy of the reaction less above this temperature than below. In cholesterol-depleted membranes a single break at around 26 degrees C was observed with activation energies greater above this temperature than below it. In cholesterol-enriched membranes Arrhenius plots were linear over the range examined. It is suggested that the lipid environment of the external half of the bilayer only influences 5'-nucleotidase activity in these membranes and that cholesterol exerts controlling effects on both the activity and conformation of the enzyme in native membranes.  相似文献   

15.
The effects of prostaglandins on adenylate cyclase activity have been examined in membranes purified from normal rat liver and from a series of Morris hepatomas. Prostaglandin E1 gave the greatest stimulation (up to two-fold) in all membranes. However, prostaglandins A1, A2, and F2alpha, although stimulatory in liver and four tumor membranes, were inhibitory of adenylate cyclase activity in membranes from two of the fast-growing tumors. Arrhenius plots yielded broken line curves (at 20 degrees C) for the basal activity of all enzymes. Addition of various prostaglandins caused shifts in the broken line curves and/or produced nonbroken (straight) line curves for the liver and many of the hepatoma adenylate cyclases.  相似文献   

16.
Arrhenius plots of fluoride- and guanine-nucleotide-stimulated adenylate cyclase activity were linear in adipocyte plasma membranes from lean and obese (ob/ob) mice . Arrhenius plots of isoprenaline-stimulated adenylate cyclase activity in hepatic plasma membranes biphasic in both groups. The results were biphasic in membranes from Jean mice but linear in membranes from obese mice. In contrast, Arrhenius plots of glucagon-stimulated adenylate cyclase activity in hepatic plasma membranes were biphasic in both groups. The results suggest that the coupling between the -receptor and the regulatory unit of adenylate cyclase, which has been observed to be defective in adipocyte plasma membranes from obese mice, is influenced by a different lipid environment in membranes from obese animals.  相似文献   

17.
Rats fed with a cholesterol supplement to their diet exhibited an increase in their plasma membrane cholesterol phospholipid (C/P)-lipid molar ratio from 0.72 to 0.98, whereas those fed the hypocholesterolaemic drug clofibrate in their diet exhibited a decrease in this ratio to 0.62. The properties of these membranes were analysed with regard to ligand-stimulated adenylate cyclase activity and the mobility of a fatty acid spin probe which allowed lipid phase separations to be identified. Membranes with elevated C/P ratios exhibited two distinct lipid phase separations, one at around 36 degrees C that was attributed to the external half of the bilayer and one at around 22 degrees C which was attributed to the inner half of the bilayer. Membranes with lowered C/P ratios exhibited a single lipid phase separation occurring at around 21 degrees C which was attributed to the lipids of the inner half of the bilayer. These results were compared with those obtained by manipulation of C/P ratios in vitro using liposome-cholesterol exchange techniques. Dietary manipulation of the C/P ratio of plasma membranes in vivo led to alterations in the fold stimulation of adenylate cyclase by various stimulatory ligands.  相似文献   

18.
A partially purified calmodulin (CaM)-sensitive adenylate cyclase from bovine cerebral cortex was reconstituted with a series of phosphatidylcholine liposomes having variable fatty acid composition. The enzyme was successfully associated with dimyristoyl, dipalmitoyl, distearoyl, and dioleoylphosphatidylcholine liposomes. The specific activity of the enzyme in the various liposomes varied over a 4.6-fold range indicating some degree of specificity for fatty acid composition. The adenylate cyclase-liposome preparation retained sensitivity to both CaM and 5'-guanylylimidodiphosphate (GppNHp). Arrhenius plots of enzyme activity in the four different liposome preparations all exhibited a pronounced discontinuity at 30 degrees C +/- 2, even though the bulk-phase thermal transition points for the liposomes varied from -20 to 54 degrees C. Fluorescence anisotropy studies of reconstituted liposome systems illustrated that incorporation of protein did not alter the normal-phase transition point of these lipids. Since Arrhenius plots of the enzyme in Lubrol PX, prior to reconstitution with lipids, were strictly linear, it is concluded that the breaks at 30 degrees C may be the effect of a local enzyme-phospholipid environment. It appears that this adenylate cyclase is not particularly sensitive to phase transitions of the bulk lipid phase. The phospholipid reconstituted enzyme system appears suitable for examination of the influence of lipids on the CaM-sensitive adenylate cyclase.  相似文献   

19.
Brief treatment of rat liver plasma membranes with phospholipase C of Clostridium welchii increased both the ratio of saturated to unsaturated fatty acids and the ratio of cholesterol to phospholipids. Using 5-doxylstearic acid spin probes two breaks at 29 and 19.6 °C could be observed in the order parameter, SA, vs temperature curve for untreated membranes. Upon phospholipase C digestion the lower phase transition temperature was shifted to 23 °C, while the higher phase transition temperature could not be detected up to 40 °C. The order parameter, SA, was consistently higher at all temperatures in the phospholipase C-treated membranes. As phospholipase C is known to attack the outer lamella, these results can be interpreted as indicating an increase in ordering (i.e., decrease in fluidity) of the outer membrane lamella. On the other hand, an increase in basal activity of adenylate cyclase of the treated membranes was observed with an apparent reduction of the activation energies both below and above the break (at 20 °C) in the Arrhenius plot of enzyme activity. Phospholipase C treatment did not affect the temperature of the break in Arrhenius kinetics of the enzyme. The results are discussed in terms of the role of the ordering state of membrane lipids in adenylate cyclase activity.  相似文献   

20.
1. Synthetic lysophosphatidylcholines inhibit the glucagon-stimulated adenylate cyclase activity of rat liver plasma membranes at concentrations two to five times lower than those needed to inhibit the fluoride-stimulated activity. 2. Specific 125I-labelled glucagon binding to hormone receptors is inhibited at concentrations similar to those inhibiting the fluoride-stimulated activity. 3. At concentrations of lysophosphatidylcholines immediately below those causing inhibition, an activation of adenylate cyclase activity or hormone binding was observed. 4 These effects are essentially reversible. 5. We conclude that the increased sensitivity of glucagon-stimulated adenylate cyclase to inhibition may be due to the lysophosphatidylcholines interfering with the physical coupling between the hormone receptor and catalytic unit of adenylate cyclase. 6. We suggest that, in vivo, it is possible that lysophosphatidylcholines may modulate the activity of adenylate cyclase only when it is in the hormone-stimulated state.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号