首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In floating soils, organic matter accumulation is the result of the imbalance between decomposition rate and macrophytes’ production, and it can limit nutrient availability. In this study, we determined the percentage of litter that is added to the floating soil in one year and the nitrogen dynamics of Rhynchospora asperula (Nees) Steud (Cyperaceae), an abundant species in Esteros del Iberá, a South American wetland with extended areas of floating soils. According to the decomposition rate determined (k = 0.0032 day−1), the annual percentage of mass lost was 69%. Conditions of the floating soil were simulated in a 146-day field experiment. The results show that the decomposition rate was higher when the litter was in water contact, and the mass loss in the field sampling at the beginning of the decomposition was similar to that of the treatments that simulated this condition. The nitrogen concentration in the aboveground biomass was almost constant, and the results indicate that there was translocation from the senescent leaves, but not a preferential nitrogen translocation from the rhizomes and roots. During summer the maximum biomass and the low nitrogen concentration in the floating soil coincide, but the nitrogen intake by the aboveground biomass was only 4% of the total nitrogen content of the floating soil. Nitrogen concentration in the litter increased and, though immobilization cannot be ruled out, there was net mineralization. The nitrogen mineralized in the first decomposition year was 30% of the nitrogen added to aboveground biomass during the study period.  相似文献   

2.
Araujo PI  Yahdjian L  Austin AT 《Oecologia》2012,168(1):221-230
Surface litter decomposition in arid and semiarid ecosystems is often faster than predicted by climatic parameters such as annual precipitation or evapotranspiration, or based on standard indices of litter quality such as lignin or nitrogen concentrations. Abiotic photodegradation has been demonstrated to be an important factor controlling aboveground litter decomposition in aridland ecosystems, but soil fauna, particularly macrofauna such as termites and ants, have also been identified as key players affecting litter mass loss in warm deserts. Our objective was to quantify the importance of soil organisms on surface litter decomposition in the Patagonian steppe in the absence of photodegradative effects, to establish the relative importance of soil organisms on rates of mass loss and nitrogen release. We estimated the relative contribution of soil fauna and microbes to litter decomposition of a dominant grass using litterboxes with variable mesh sizes that excluded groups of soil fauna based on size class (10, 2, and 0.01 mm), which were placed beneath shrub canopies. We also employed chemical repellents (naphthalene and fungicide). The exclusion of macro- and mesofauna had no effect on litter mass loss over 3 years (P = 0.36), as litter decomposition was similar in all soil fauna exclusions and naphthalene-treated litter. In contrast, reduction of fungal activity significantly inhibited litter decomposition (P < 0.001). Although soil fauna have been mentioned as a key control of litter decomposition in warm deserts, biogeographic legacies and temperature limitation may constrain the importance of these organisms in temperate aridlands, particularly in the southern hemisphere.  相似文献   

3.
1. The ’hydrogeomorphic‘ approach to functional assessment of wetlands (HGM) was developed as a synthetic mechanism for compensatory mitigation of wetlands lost or damaged by human activities. The HGM approach is based on: (a) classification of wetlands by geomorphic origin and hydrographic regime (b) assessment models that associate variables as indicators of function, and (c) comparison to reference wetlands that represent the range of conditions that may be expected in a particular region. In this paper, we apply HGM to riparian wetlands of alluvial rivers. 2. In the HGM classification, riverine wetlands are characterized by formative fluvial processes that occur mainly on flood plains. The dominant water sources are overbank flooding from the channel or subsurface hyporheic flows. Examples of riverine wetlands in the U.S.A. are: bottomland hardwood forests that typify the low gradient, fine texture substratum of the south-eastern coastal plain and the alluvial flood plains that typify the high gradient, coarse texture substratum of western montane rivers. 3. Assessment (logic) models for each of fourteen alluvial wetland functions are described. Each model is a composite of two to seven wetland variables that are independently scored in relation to a reference data set developed for alluvial rivers in the western U.S.A. Scores are summarized by a ’functional capacity index‘ (FCI), which is multiplied by the area of the project site to produce a dimensionless ’functional capacity unit‘ (FCU). When HGM is properly used, compensatory mitigation is based on the FCUs lost that must be returned to the riverine landscape under statutory authority. 4. The HGM approach also provides a framework for long-term monitoring of mitigation success or failure and, if failing, a focus on topical remediation. 5. We conclude that HGM is a robust and easy method for protecting riparian wetlands, which are critically important components of alluvial river landscapes.  相似文献   

4.
Insect herbivory can strongly influence ecosystem nutrient dynamics, yet the indirect effects of herbivore‐altered litter quality on subsequent decomposition remain poorly understood. The northern tamarisk beetle Diorhabda carinulata was released across several western states as a biological control agent to reduce the extent of the invasive tree Tamarix spp. in highly‐valued riparian ecosystems; however, very little is currently known about the effects of this biocontrol effort on ecosystem nutrient cycling. In this study, we examined alterations to nutrient dynamics resulting from beetle herbivory in a Tamarix‐invaded riparian ecosystem in the Great Basin Desert in northern Nevada, USA, by measuring changes in litter quality and decomposition, as well as changes in litter quantity. Generally, herbivory resulted in improved leaf litter chemical quality, including significantly increased nitrogen (N) and phosphorus (P) concentrations and decreased carbon (C) to nitrogen (C:N), C:P, N:P, and lignin:N ratios. Beetle‐affected litter decomposed 23% faster than control litter, and released 16% more N and 60% more P during six months of decomposition, as compared to control litter. Both litter types showed a net release of N and P during decomposition. In addition, herbivory resulted in significant increases in annual rates of total aboveground litter and leaf litter production of 82% and 71%, respectively, under the Tamarix canopy. Our finding that increased rates of N and P release linked with an increased rate of mass loss during decomposition resulting from herbivore‐induced increases in litter quality provides new support to the nutrient acceleration hypothesis. Moreover, results of this study demonstrate that the introduction of the northern tamarisk beetle as biological control to a Tamarix‐invaded riparian ecosystem has lead to short‐term stimulation of nutrient cycling. Alterations to nutrient dynamics could have implications for future plant community composition, and thus the potential for restoration of Tamarix‐invaded ecosystems.  相似文献   

5.
Allochthonous (e.g., riparian) plant litter is among the organic matter resources that are important for wetland ecosystems. A compact canopy of free‐floating vegetation on the water surface may allow for riparian litter to remain on it for a period of time before sinking to the bottom. Thus, we hypothesized that canopy of free‐floating vegetation may slow decomposition processes in wetlands. To test the hypothesis that the retention of riparian leaf litter on the free‐floating vegetation in wetlands affects their subsequent decomposition on the bottom of wetlands, a 50‐day in situ decomposition experiment was performed in a wetland pond in subtropical China, in which litter bags of single species with fine (0.5 mm) or coarse (2.0 mm) mesh sizes were placed on free‐floating vegetation (dominated by Eichhornia crassipes, Lemna minor, and Salvinia molesta) for 25 days and then moved to the pond bottom for another 25 days or remained on the pond bottom for 50 days. The leaf litter was collected from three riparian species, that is, Cinnamomum camphora, Diospyros kaki, and Phyllostachys propinqua. The retention of riparian leaf litter on free‐floating vegetation had significant negative effect on the carbon loss, marginal negative effects on the mass loss, and no effect on the nitrogen loss from leaf litter, partially supporting the hypothesis. Similarly, the mass and carbon losses from leaf litter decomposing on the pond bottom for the first 25 days of the experiment were greater than those from the litter decomposing on free‐floating vegetation. Our results highlight that in wetlands, free‐floating vegetation could play a vital role in litter decomposition, which is linked to the regulation of nutrient cycling in ecosystems.  相似文献   

6.
荒漠区地表凋落物分解对季节性降水增加的响应   总被引:1,自引:0,他引:1       下载免费PDF全文
为探讨季节性降水增加对荒漠生态系统凋落物分解的影响, 在古尔班通古特沙漠南缘, 选择粗柄独尾草(Eremurus inderiensis)叶、尖喙牻牛儿苗(Erodium oxyrrhynchum)叶、尖喙牻牛儿苗茎、沙漠绢蒿(Seriphidium santolinum)茎4种凋落物样品, 在2009-2011年研究了模拟季节降水增加(冬春增雪、夏季增水)和自然降水处理下凋落物的分解。持续2年的分解实验表明: (1)各组分凋落物的质量损失过程可以用负指数衰减方程较好地拟合(R2> 0.90); 经过637天的分解, 各组分凋落物质量残留率在自然降水、冬春增雪、夏季增水处理下均无显著性差异(p > 0.05)。粗柄独尾草叶、尖喙牻牛儿苗叶、尖喙牻牛儿苗茎、沙漠绢蒿茎在自然降水处理下的质量残留率分别为40.59%、35.50%、36.00%和63.96%; (2)各组分凋落物的质量残留率与N残留率显著正相关, 凋落物N的损失快于其质量损失, 且初始N含量与分解速率显著正相关(r = 0.60, p = 0.038), C/N解释了71%的地面凋落物分解速率。研究表明, 季节性的短暂降水增加对荒漠区地表凋落物分解没有显著影响, 凋落物初始化学组成是预测荒漠区地表凋落物分解的重要因素。  相似文献   

7.
Riparian wetlands are well known for providing the important ecosystem service of carbon storage. However, changes in land-use regimes surrounding riparian wetlands have been shown to result in alterations to the wetland plant community. These plant community changes have the potential to alter litter quality, decomposition rates, and ultimately the capacity of riparian wetlands to store carbon. To determine the effects of plant community shifts associated with disturbance on decomposition and carbon inputs, we performed a yearlong decomposition experiment using in situ herbaceous material, leaf litter, and control litter and examined biomass inputs in six headwater riparian wetlands in central Pennsylvania. Two sites were classified as Hemlock-Mixed Hardwood Palustrine Forest, two were classified as Broadleaf Palustrine Forest, and two were classified as Reed Canary Grass-Floodplain Grassland (Zimmerman et al. 2012). Plant matter with greater initial percent C, percent lignin, and lignin:N ratios decomposed more slowly while plant matter with greater initial cellulose decomposed more quickly. However, no significant differences were found between plant community types in decomposition rate or amount of carbon remaining at the end of the experiment, indicating that the differences in plant community type did not have a large impact on decomposition in riparian wetlands. This work has important implications for studies that examine the decomposition dynamics of a few select species, as they may not capture the decomposition dynamics of the plant community and thus extrapolating results from these studies to the larger ecosystem may be inappropriate.  相似文献   

8.
Land‐use/land‐cover change (LULCC) often results in degradation of natural wetlands and affects the dynamics of greenhouse gases (GHGs). However, the magnitude of changes in GHG emissions from wetlands undergoing various LULCC types remains unclear. We conducted a global meta‐analysis with a database of 209 sites to examine the effects of LULCC types of constructed wetlands (CWs), croplands (CLs), aquaculture ponds (APs), drained wetlands (DWs), and pastures (PASs) on the variability in CO2, CH4, and N2O emissions from the natural coastal wetlands, riparian wetlands, and peatlands. Our results showed that the natural wetlands were net sinks of atmospheric CO2 and net sources of CH4 and N2O, exhibiting the capacity to mitigate greenhouse effects due to negative comprehensive global warming potentials (GWPs; ?0.9 to ?8.7 t CO2‐eq ha?1 year?1). Relative to the natural wetlands, all LULCC types (except CWs from coastal wetlands) decreased the net CO2 uptake by 69.7%?456.6%, due to a higher increase in ecosystem respiration relative to slight changes in gross primary production. The CWs and APs significantly increased the CH4 emissions compared to those of the coastal wetlands. All LULCC types associated with the riparian wetlands significantly decreased the CH4 emissions. When the peatlands were converted to the PASs, the CH4 emissions significantly increased. The CLs, as well as DWs from peatlands, significantly increased the N2O emissions in the natural wetlands. As a result, all LULCC types (except PASs from riparian wetlands) led to remarkably higher GWPs by 65.4%?2,948.8%, compared to those of the natural wetlands. The variability in GHG fluxes with LULCC was mainly sensitive to changes in soil water content, water table, salinity, soil nitrogen content, soil pH, and bulk density. This study highlights the significant role of LULCC in increasing comprehensive GHG emissions from global natural wetlands, and our results are useful for improving future models and manipulative experiments.  相似文献   

9.
多年冻土区河岸森林湿地是水文、生态和生物化学过程的关键区域。本研究以河岸森林湿地及其与泥炭地的交错带土壤为对象,分析了腐殖质层和不同深度土壤理化性质、生态化学计量和微生物呼吸活性( 微生物生物量碳、基础呼吸、微生物熵和代谢熵)特征。结果表明: 与大兴安岭多年冻土区泥炭地和河岸森林湿地的交错带相比,河岸森林湿地土壤理化性质主要分异在20 cm土层以下,其总碳、总氮含量和碳磷比、氮磷比显著降低,生态化学计量特征的变化主要是由于氮含量变化引起的,说明河岸森林湿地土壤氮转移相对较快,存在氮限制;交错带湿地土壤中钠、镁、钾和钙含量主要在30 cm土层发生分异,而河岸森林湿地土壤中钠、镁、钾和钙含量主要在20 cm土层发生分异,其镁含量与土壤总碳、总氮和总磷含量显著相关,说明土壤镁含量是大兴安岭河岸森林湿地的重要营养元素;河岸森林湿地和交错带腐殖质层微生物呼吸活性高于其他层土壤,说明其易分解的碳组分含量高;河岸森林湿地和交错带土壤微生物呼吸活性与土壤理化性质、生态化学计量特征及营养元素的相关性存在差异,而河岸森林湿地土壤总氮含量与微生物呼吸活性显著相关,说明大兴安岭河岸带湿地土壤微生物活性受氮的限制。  相似文献   

10.
Demand for data on the ecological condition of wetlands is increasing as state and federal management programs recognize its value in reporting on the ambient condition of the resource, targeting restoration and protection efforts, evaluating the effects of mitigation and restoration practices, supporting regulatory decisions, and tracking the impact of land use decisions. We developed an approach for generating a single measure of wetland condition from ecological variables used in hydrogeomorphic (HGM) assessment. An Index of Wetland Condition (IWC) was developed from HGM field data collected to assess freshwater, non-tidal flat, riverine, and depression wetlands in the Nanticoke River watershed. The HGM variables were screened and scored based on a range check, responsiveness, and metric redundancy, employing a method used to develop indices of biotic integrity. Weights of the individual variables were adjusted to reflect our understanding of wetland ecology and to include variables that represented the vegetation, hydrology, and buffer of a wetland. The final IWC score discriminated high, medium, and low site disturbance classes in flat and riverine wetlands and high and low disturbance classes in depressions, one-way ANOVA F-values ranged from 44.5 to 79.1 (all p <0.0001). The combination of the IWC and HGM assessments provides a comprehensive evaluation of the wetland resource. HGM produces information on specific wetland functions. The IWC concisely conveys the ecological condition of the resource and maximizes the utility of the data collected in an HGM assessment.  相似文献   

11.
Early stage litter decomposition rates for Swiss forests   总被引:8,自引:0,他引:8  
The decomposition of belowground and aboveground tree litter was studied on five forest sites across Switzerland, ranging from 480 to 1500 m in altitude, and including calcareous and acidic soils. In addition to decomposition of local litter types (Picea abies, Fagus sylvatica, Castanea sativa), the decomposition of a standard beech litter was studied on all sites. After 2 years of decomposition, mass loss ranged from 18 to 71% across the different sites and litter types. The lowest decomposition rates were observed for beech roots, while mass loss was greatest for both spruce needles and spruce roots at the low-altitude site. Mass loss during the first winter correlated best with the content of water-soluble substances. After 1 year of incubation, mass loss of the standard litter varied less than did mass loss of local litter, but variance increased during the second year for aboveground litter. These observations indicate a smaller climatic influence on litter breakdown at the beginning of the decomposition process. Litter mass loss could be described using an exponential model with a decay constant depending on either lignin/N ratio or Mn content of the litter and annual soil temperature and throughfall precipitation as climatic variables. Modelling the observed mass loss indicated a strong influence of litter quality in the first 2 years of decomposition, confirming the field data from the standard litter experiment. The experiment will continue for some years and is expected to yield additional data on long-term decomposition.  相似文献   

12.
Wetland ecosystems store a large amount of organic carbon (C) in soils, due to the slow decomposition rates of plant litter and soil organic matter. Increased nitrogen (N) availability induced by human activities and global warming may accelerate litter decomposition and affect soil organic C dynamics in wetlands. In the present study, we investigated the effect of N addition on decomposition of Calamagrostis angustifolia litters from freshwater marshes in the Sanjiang Plain of Northeast China under field and laboratory conditions. First, we assessed the changes in initial litter chemical composition and subsequent decomposition following three years of N addition at the rate of 24 g N m−2 year−1 under field conditions. Our results showed that N addition increased litter N concentration and decreased C/N ratio, and thus stimulated litter decomposition. Secondly, we examined the effect of increased N availability (0, 25, 50 and 100 mg N g−1 litter) on litter decomposition under laboratory conditions. Increased exterior N availability also enhanced microbial respiration and increased litter mass loss under both waterlogging and non-waterlogging conditions. In addition, waterlogging conditions inhibited microbial respiration and suppressed litter mass loss. These findings demonstrated that N addition increased litter decomposition rates through improved litter quality and enhanced microbial activity in freshwater marshes of Northeast China. This implies that increased N availability accelerates litter decomposition rates, and thus may cause substantial losses of soil C and diminish and even reverse the C sink function of wetlands in the Sanjiang Plain of Northeast China.  相似文献   

13.
近20年来, 青藏高原高寒湿地经历了明显的气候变化, 从而导致多数湿地水位下降和氮沉降的增加。对于湿地生态系统来说, 水位下降意味着土壤通气性能的改善, 可能会导致土壤呼吸的增加; 而氮沉降的增加可能会降低土壤微生物生物量和pH值, 从而可能抑制土壤呼吸。为此, 在青海海北高寒草地生态系统国家野外科学观测研究站利用中宇宙(Mesocosm)实验方法, 探讨了青藏高原高寒泥炭型湿地土壤呼吸对水位降低和氮添加的响应。结果表明: (1)水位降低显著增强了土壤呼吸, 而氮添加对土壤呼吸的影响依赖于水位的变化: 对照水位下, 氮添加显著抑制土壤呼吸; 而水位降低时, 氮添加对土壤呼吸速率无显著影响。(2)土壤呼吸速率与地上生物量、枯落物累积量之间呈显著正相关关系, 而与根系生物量无显著相关关系。(3)水位降低显著提高了土壤呼吸的温度敏感性, 而氮添加对其无显著的影响。因此预测: 随着氮沉降的升高, 高寒泥炭湿地土壤CO2的排放量将会减少; 然而随着暖干化背景下水位的降低, 青藏高原高寒湿地会排放更多的CO2。  相似文献   

14.
郭洁芸  王雅歆  李建龙 《生态学报》2022,42(12):4823-4833
近年来,中国大气氮沉降水平不断增加,过量的活性氮输入深刻影响了我国陆地生态系统碳循环。虽然已有大量的研究报道了模拟氮添加实验对我国陆地生态系统碳动态的影响,但是由于复杂的地理条件和不同的施氮措施,关于植物和土壤碳库对氮添加的一般响应特征和机制仍存在广泛争议。因此,采用整合分析方法,收集整理了172篇已发表的中国野外氮添加试验结果,在全国尺度上探究氮添加对我国陆地生态系统植物和土壤碳动态的影响及其潜在机制。结果表明,氮添加显著促进了植物的碳储存,地上和地下生物量均显著增加,且地上生物量比地下生物量增加得多。同时,氮添加显著增加了凋落物质量,但对细根生物量没有显著影响。氮添加显著降低了植物叶片、凋落物和细根的碳氮比。总体上,氮添加显著增加了土壤有机碳含量并降低了土壤pH值,但对可溶性有机碳、微生物生物量碳和土壤呼吸的影响并不显著。在不同的地理条件下,土壤有机碳含量对氮添加的响应呈现增加、减少或不变的不同趋势。回归分析表明,地上生物量与土壤有机碳含量之间,以及微生物生物量碳与土壤有机碳含量之间呈负相关关系。虽然氮添加通过增加凋落物质量显著促进了植物碳输入,但同时也会通过刺激微生物降解来增加土...  相似文献   

15.
《植物生态学报》2014,38(6):619
近20年来, 青藏高原高寒湿地经历了明显的气候变化, 从而导致多数湿地水位下降和氮沉降的增加。对于湿地生态系统来说, 水位下降意味着土壤通气性能的改善, 可能会导致土壤呼吸的增加; 而氮沉降的增加可能会降低土壤微生物生物量和pH值, 从而可能抑制土壤呼吸。为此, 在青海海北高寒草地生态系统国家野外科学观测研究站利用中宇宙(Mesocosm)实验方法, 探讨了青藏高原高寒泥炭型湿地土壤呼吸对水位降低和氮添加的响应。结果表明: (1)水位降低显著增强了土壤呼吸, 而氮添加对土壤呼吸的影响依赖于水位的变化: 对照水位下, 氮添加显著抑制土壤呼吸; 而水位降低时, 氮添加对土壤呼吸速率无显著影响。(2)土壤呼吸速率与地上生物量、枯落物累积量之间呈显著正相关关系, 而与根系生物量无显著相关关系。(3)水位降低显著提高了土壤呼吸的温度敏感性, 而氮添加对其无显著的影响。因此预测: 随着氮沉降的升高, 高寒泥炭湿地土壤CO2的排放量将会减少; 然而随着暖干化背景下水位的降低, 青藏高原高寒湿地会排放更多的CO2。  相似文献   

16.
湿地氮素传输过程研究进展   总被引:32,自引:3,他引:29  
综述了湿地氮素传输过程的研究进展。湿地氮素传输过程包括物理过程、化学过程和生物过程 ,与土壤、植物的发生、发育紧密联系在一起 ,并形成了空气 -水 -土 -生命系统中物质循环和能量流动的复杂网络。湿地硝态氮的淋失直接威胁着湿地地下水水质安全 ,N2 O源汇转变受土壤和水体等环境因子的制约 ,氨挥发则与水体 p H值密切相关排放。湿地氮素的化学转化过程是矿质养分供给和 N2 O产生的主要机制 ,受环境因子和人类活动干扰的影响 ;动力学模型可用于描述氮素的化学转化过程。湿地植物的吸收和累积以及微生物的分解过程是湿地氮素循环的重要环节。最后分析了当前国内外研究中存在的不足 ,并对未来研究的重点领域进行了展望  相似文献   

17.
草原区河流河漫滩草甸是生物多样性表现最充分和生物生产力最高的地段, 但由于过度放牧利用, 绝大部分草甸处于退化状态。该文以锡林河流域中游的河漫滩草甸为研究对象, 比较分析了围封保育湿地与放牧退化湿地的群落组成、地上生物量, 以及共有植物种的植株高度、节间长、叶长、叶宽, 土壤含水量、容重, 群落地下根量及根的分布, 土壤微生物生物量碳、氮的变化。结果表明: 1)放牧使得湿地植物群落优势种发生变化, 原有湿生植物逐渐向旱生化转变, 同时地上及地下生物量明显降低。2)退化湿地的植物呈现显著小型化现象。3)放牧退化湿地的土壤含水量较围封保育湿地低, 其垂直分布及地下根的垂直分布也发生变化。在低河漫滩, 土壤水分随土层的增加而增加, 根量也趋于深层化。但在高河漫滩湿地, 土壤含水量接近典型草原, 根未出现深层化分布趋势。4)放牧践踏引起土壤容重和土壤紧实度增加。5)放牧使得低河漫滩湿地土壤微生物生物量增加, 而在过渡区及高河漫滩湿地, 放牧使得土壤微生物生物量碳、氮含量显著降低。  相似文献   

18.
Changing inputs of carbon to soil is one means of potentially increasing carbon sequestration in soils for the purpose of mitigating projected increases in atmospheric CO2 concentrations. The effect of manipulations of aboveground carbon input on soil carbon storage was tested in a temperate, deciduous forest in east Tennessee, USA. A 4.5-year experiment included exclusion of aboveground litterfall and supplemental litter additions (three times ambient) in an upland and a valley that differed in soil nitrogen availability. The estimated decomposition rate of the carbon stock in the O horizon was greater in the valley than in the upland due to higher litter quality (i.e., lower C/N ratios). Short-term litter exclusion or addition had no effect on carbon stock in the mineral soil, measured to a depth of 30 cm, or the partitioning of carbon in the mineral soil between particulate- and mineral-associated organic matter. A two-compartment model was used to interpret results from the field experiments. Field data and a sensitivity analysis of the model were consistent with little carbon transfer between the O horizon and the mineral soil. Increasing aboveground carbon input does not appear to be an effective means of promoting carbon sequestration in forest soil at the location of the present study because a disconnect exists in carbon dynamics between O horizon and mineral soil. Factors that directly increase inputs to belowground soil carbon, via roots, or reduce decomposition rates of organic matter are more likely to benefit efforts to increase carbon sequestration in forests where carbon dynamics in the O horizon are uncoupled from the mineral soil.  相似文献   

19.
Litter disappearance was examined before (1989) and after (1990) Hurricane Hugo in the Luquillo Experimental Forest, Puerto Rico using mesh litterbags containing abscised Cyrilla racemiflont or Dacryodes excelsa leaves or fresh Prestoea montana leaves. Biomass and nitrogen dynamics were compared among: (i) species; (ii) mid- and high elevation forest types; (iii) riparian and upland sites; and (iv) pre- and post-hurricane disturbed environments. Biomass disappearance was compared using multiple regression and negative exponential models in which the slopes were estimates of the decomposition rates subsequent to apparent leaching losses and the y-intercepts were indices of initial mass losses (leaching). Cyrilla racemiflora leaves with low nitrogen (0.39%) and high lignin (22.1%) content decayed at a low rate and immobilized available nitrogen. Dacryodes excelsa leaves had moderate nitrogen (0.67%) and lignin (16.6%) content, decayed at moderate rates, and maintained the initial nitrogen mass. Prestoea montana foliage had high nitrogen (1.76%) and moderate lignin (16.7%) content and rapidly lost both mass and nitrogen. There were no significant differences in litter disappearance and nitrogen dynamics among forest types and slope positions. Initial mass loss of C. racemiflora leaves was lower in 1990 but the subsequent decomposition rate did not change. Initial mass losses and the overall decomposition rates were lower in 1990 than in 1989 for Dacryodes excelsa. Dacryodes excelsa and C. racemiflora litter immobilized nitrogen in 1990 but released 10-15 percent of their initial nitrogen in 1989, whereas P. montana released nitrogen in both years (25-40%). Observed differences in litter disappearance rates between years may have been due to differences in the timing of precipitation. Foliar litter inputs during post-hurricane recovery of vegetation in Puerto Rico may serve to immobilize and conserve site nitrogen.  相似文献   

20.
为了探究生长期间不同土壤厚度、水分及种植方式处理对草本植物凋落物分解质量损失和化学计量特征的的影响,采用分解袋法,在露天分解床上分解经过生长期间2种土壤厚度(对照土壤厚度和浅土处理)、2种水分(正常灌水处理和干旱处理)和2种种植方式(单种和混种)处理的苇状羊茅(Festuca arundinacea Schreb.)和黑麦草(Lolium perenne L.)凋落物,研究生长期间土壤厚度和水分减少及不同的种植方式是否通过改变两物种初始凋落物质量、产量和组分来影响自身凋落物分解。结果发现:(1)与对照组(CK)相比,在干旱组(D)和浅土+干旱组(SD),两物种地上、根系和总的凋落物质量损失率、初始N和P含量均显著增加,凋落物产量、C/N和C/P显著降低,凋落物地上组分比大体上无显著变化;而不同的种植方式处理对各组分质量损失率、元素含量、计量比、凋落物产量和组分比大体上无显著影响;(2)两物种地上、根系和总凋落物的质量损失率分别与地上、根系和总N含量呈显著正相关,与C/N呈显著负相关,与凋落量呈显著负相关,而总凋落物质量损失率与地上凋落物组分比呈显著正相关。结果表明,生长期间干旱和浅土+干旱处理能够通过影响苇状羊茅和黑麦草的初始凋落物质量、产量和组分比来加快地上、根系和总凋落物分解,其中凋落物N含量和C/N是影响两物种凋落物分解快慢的主要原因。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号