首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
3.
Wnt/β-catenin signalling is central to development and its regulation is essential in preventing cancer. Using phosphorylation of Dishevelled as readout of pathway activation, we identified Drosophila Wnk kinase as a new regulator of canonical Wnt/β-catenin signalling. WNK kinases are known for regulating ion co-transporters associated with hypertension disorders. We demonstrate that wnk loss-of-function phenotypes resemble canonical Wnt pathway mutants, while Wnk overexpression causes gain-of-function canonical Wnt-signalling phenotypes. Importantly, knockdown of human WNK1 and WNK2 also results in decreased Wnt signalling in mammalian cell culture, suggesting that Wnk kinases have a conserved function in ensuring peak levels of canonical Wnt signalling.  相似文献   

4.
5.
Wnt proteins are secreted glycoproteins that bind to the N-terminal extra-cellular cysteine-rich domain of the Frizzled (Fzd) receptor family. The Fzd receptors can respond to Wnt proteins in the presence of Wnt co-receptors to activate the canonical and non-canonical Wnt pathways. Recent studies indicated that, among the Fzd family, Fzd7 is the Wnt receptor most commonly upregulated in a variety of cancers including colorectal cancer, hepatocellular carcinoma and triple negative breast cancer. Fzd7 plays an important role in stem cell biology and cancer development and progression. In addition, it has been demonstrated that siRNA knockdown of Fzd7, the anti-Fzd7 antibody or the extracellular peptide of Fzd7 (soluble Fzd7 peptide) displayed anti-cancer activity in vitro and in vivo mainly due to the inhibition of the canonical Wnt signaling pathway. Furthermore, pharmacological inhibition of Fzd7 by small interfering peptides or a small molecule inhibitor suppressed β-catenin-dependent tumor cell growth. Therefore, targeted inhibition of Fzd7 represents a rational and promising new approach for cancer therapy.  相似文献   

6.
The Ca(2+) signaling pathway appears to regulate the processes of the early development through its antagonism of canonical Wnt/β-catenin signaling pathway. However, the underlying mechanism is still poorly understood. Here, we show that nuclear factor of activated T cells (NFAT), a component of Ca(2+) signaling, interacts directly with Dishevelled (Dvl) in a Ca(2+)-dependent manner. A dominant negative form of NFAT rescued the inhibition of the Wnt/β-catenin pathway triggered by the Ca(2+) signal. NFAT functioned downstream of β-catenin without interfering with its stability, but influencing the interaction of β-catenin with Dvl by its competitively binding to Dvl. Furthermore, we demonstrate that NFAT is a regulator in the proliferation and differentiation of neural progenitor cells by modulating canonical Wnt/β-catenin signaling pathway in the neural tube of chick embryo. Our findings suggest that NFAT negatively regulates canonical Wnt/β-catenin signaling by binding to Dvl, thereby participating in vertebrate neurogenesis.  相似文献   

7.
8.
9.
Retinoblastoma is a pediatric retinal tumor caused by mutational inactivation of the tumor suppressor pRb. Additional genetic changes, as yet unidentified, are believed to be required for tumor initiation. Mutations in the Wnt signaling pathway have been implicated in the pathogenesis of many cancers. Multiple Wnt pathway genes are expressed in the retina and the pRb and Wnt pathways interact biochemically, raising the possibility that alterations in the Wnt pathway contribute to retinoblastoma. Our studies showed that Wnt signaling activation significantly decreased the viability of retinoblastoma cell lines by inducing cell cycle arrest, which was associated with upregulated p53. Furthermore, immunolocalization of the Wnt signaling mediator beta-catenin in human and mouse retinoblastoma tissue indicated that canonical Wnt signaling is suppressed in tumors in vivo. These studies are consistent with the Wnt pathway acting as a tumor suppressor in retinoblastoma and suggest that loss of Wnt signaling is tumorigenic in the retina.  相似文献   

10.
11.
Wnt signaling plays an essential role in induction and development of the limb. Missing digits are one consequence of the reduced Wnt signaling in Wnt7a null mice, while extra digits result from excess Wnt signaling in mice null for the Wnt antagonist Dkk1. The extra digits and expanded apical ectodermal ridge (AER) of Dkk1-deficient mice closely resemble En1 null mice. To evaluate the in vivo interaction between En1 and the canonical Wnt signaling pathway, we generated double and triple mutants combining the hypomorphic doubleridge allele of Dkk1 with null alleles of En1 and Wnt7a. Reducing Dkk1 expression in Dkk1d/+Wnt7a-/- double mutants prevented digit loss, indicating that Wnt7a acts through the canonical pathway during limb development. Reducing Dkk1 levels in Dkk1d/dEn1-/- double mutants resulted in severe phenotypes not seen in either single mutant, including fused bones in the autopod, extensive defects of the zeugopod, and loss of the ischial bone. The subsequent elimination of Wnt7a in Dkk1d/dEn1-/-Wnt7a-/- triple mutants resulted in correction of most, but not all, of these defects. The failure of Wnt7a inactivation to completely correct the limb defects of Dkk1d/dEn1-/- double mutants indicates that Wnt7a is not the only gene regulated by En1 during development of the mouse limb.  相似文献   

12.
Protein kinase CK2 is required for dorsal axis formation in Xenopus embryos   总被引:2,自引:0,他引:2  
Dorsal axis formation in Xenopus embryos is dependent upon asymmetrical localization of beta-catenin, a transducer of the canonical Wnt signaling pathway. Recent biochemical experiments have implicated protein kinase CK2 as a regulator of members of the Wnt pathway including beta-catenin. Here, we have examined the role of CK2 in dorsal axis formation. CK2 was present in the developing embryo at an appropriate time and place to participate in dorsal axis formation. Overexpression of mRNA encoding CK2 in ventral blastomeres was sufficient to induce a complete ectopic axis, mimicking Wnt signaling. A kinase-inactive mutant of CK2alpha was able to block ectopic axis formation induced by XWnt8 and beta-catenin and was capable of suppressing endogenous axis formation when overexpressed dorsally. Taken together, these studies demonstrate that CK2 is a bona fide member of the Wnt pathway and has a critical role in the establishment of the dorsal embryonic axis.  相似文献   

13.
Fibroblast growth factor 2 (FGF2) positively modulates osteoblast differentiation and bone formation. However, the mechanism(s) is not fully understood. Because the Wnt canonical pathway is important for bone homeostasis, this study focuses on modulation of Wnt/β-catenin signaling using Fgf2(-/-) mice (FGF2 all isoforms ablated), both in the absence of endogenous FGF2 and in the presence of exogenous FGF2. This study demonstrates a role of endogenous FGF2 in bone formation through Wnt signaling. Specifically, mRNA expression for the canonical Wnt genes Wnt10b, Lrp6, and β-catenin was decreased significantly in Fgf2(-/-) bone marrow stromal cells during osteoblast differentiation. In addition, a marked reduction of Wnt10b and β-catenin protein expression was observed in Fgf2(-/-) mice. Furthermore, Fgf2(-/-) osteoblasts displayed marked reduction of inactive phosphorylated glycogen synthase kinase-3β, a negative regulator of Wnt/β-catenin pathway as well as a significant decrease of Dkk2 mRNA, which plays a role in terminal osteoblast differentiation. Addition of exogenous FGF2 promoted β-catenin nuclear accumulation and further partially rescued decreased mineralization in Fgf2(-/-) bone marrow stromal cell cultures. Collectively, our findings suggest that FGF2 stimulation of osteoblast differentiation and bone formation is mediated in part by modulating the Wnt pathway.  相似文献   

14.
Penile squamous cell cancer (PSCC) is the most frequent penile malignant disease. Infections with human papillomaviruses (HPV) are a major etiologic driver of PSCC. However, the molecular details of the underlying carcinogenesis are understudied because of rare clinical specimens and missing cell lines. Here, we investigated if the expression of high-risk HPV16 oncogenes causes an augmentation of the Wnt pathway using unique HPV-positive penile cancer (PeCa) cell lines in monolayer and organotypic 3D raft cultures as well as tissue micro arrays containing clinical tissue specimens. The HPV oncoproteins enhanced the expression of Leucine-rich repeat-containing G-protein coupled receptor 6 (LGR6) and the HPV-positive PeCa cells expressed a signature of Wnt target and stemness-associated genes. However, the notable lack of nuclear β-catenin in vitro and in situ raised the question if the enhanced expression of Wnt pathway factors is tantamount to an active Wnt signaling. Subsequent TOP-flash reporter assays revealed Wnt signaling as absent and not inducible by respective Wnt ligands in PeCa cell lines. The HPV-positive PeCa cells and especially HPV-positive PeCa specimens of the tumor core expressed the Wnt antagonist and negative feedback-regulator Dickkopf1 (DKK1). Subsequent neutralization experiments using PeCa cell line-conditioned media demonstrated that DKK1 is capable to impair ligand-induced Wnt signaling. While gene expression analyses suggested an augmented and active canonical Wnt pathway, the respective signaling was inhibited due to the endogenous expression of the antagonist DKK1. Subsequent TMA stainings indicated Dkk1 as linked with HPV-positivity and metastatic disease progression in PeCa suggesting potential as a prognostic marker.  相似文献   

15.
To better understand the role of the canonical Wnt signaling pathway in cartilage development, we adenovirally expressed a constitutively active (ca) or a dominant negative (dn) form of lymphoid enhancer factor-1 (LEF-1), the main nuclear effector of the pathway, in undifferentiated mesenchymal cells, chondrogenic cells, and primary chondrocytes, and examined the expression of markers for chondrogenic differentiation and hypertrophy. caLEF-1 and LiCl, an activator of the canonical pathway, promoted both chondrogenic differentiation and hypertrophy, whereas dnLEF-1 and the gene silencing of beta-catenin suppressed LiCl-promoted effects. To investigate whether these effects were dependent on Sox9, a master regulator of cartilage development, we stimulated Sox9-deficient ES cells with the pathway. caLEF-1 and LiCl promoted both chondrogenic differentiation and hypertrophy in wild-type, but not in Sox9-deficient, cells. The response of Sox9-deficient cells was restored by the adenoviral expression of Sox9. Thus, the canonical Wnt signaling pathway promotes chondrocyte differentiation in a Sox9-dependent manner.  相似文献   

16.
17.
Transforming growth factor β1 (TGF-β) promotes renal interstitial fibrosis in vivo and the expression of mesenchymal genes in vitro; however, most of its direct targets in epithelial cells are still elusive. In a screen for genes directly activated by TGF-β, we found that components of the Wnt signaling pathway, especially Wnt11, were targets of activation by TGF-β and Smad3 in primary renal epithelial cells. In gain and loss of function experiments, Wnt11 mediated the actions of TGF-β through enhanced activation of mesenchymal marker genes, such as Zeb1, Snail1, Pai1, and αSMA, without affecting Smad3 phosphorylation. Inhibition of Wnt11 by receptor knockdown or treatment with Wnt inhibitors limited the effects of TGF-β on gene expression. We found no evidence that Wnt11 activated the canonical Wnt signaling pathway in renal epithelial cells; rather, the function of Wnt11 was mediated by the c-Jun N-terminal kinase (JNK) pathway. Consistent with the in vitro results, all the TGF-β, Wnt11, and JNK targets were activated in a unilateral ureteral obstruction (UUO) model of renal fibrosis in vivo. Our findings demonstrated cooperativity among the TGF-β, Wnt11, and JNK signaling pathways and suggest new targets for anti-fibrotic therapy in renal tissue.  相似文献   

18.
Osteoarthritis is the most prevalent form of arthritis in the world and it is becoming a major public health problem. Osteoarthritic chondrocytes undergo morphological and biochemical changes that lead to de-differentiation. The involvement of signaling pathways, such as the Wnt pathway, during cartilage pathology has been reported. Wnt signaling regulates critical biological processes. Wnt signals are transduced through at least three intracellular signaling pathways including the canonical Wnt/β-catenin pathway, the Wnt/Ca2 + pathway and the Wnt/planar cell polarity pathway. We investigated the involvement of the Wnt canonical and non-canonical pathways in human articular chondrocyte de-differentiation in vitro. Human articular chondrocytes were cultured through four passages with no treatment, or with sFRP3 treatment, an inhibitor of Wnt pathways, or with DKK1 treatment, an inhibitor of the canonical pathway. Chondrocyte-secreted markers and Wnt pathway components were analyzed using western blotting and qPCR. Inhibition of the Wnt pathway showed that the canonical Wnt signaling probably is responsible for inhibition of collagen II expression, activation of metalloproteinase 13 expression and regulation of Wnt7a and c-jun expression during chondrocyte de-differentiation in vitro. Our results also suggest that expressions of eNOS, Wnt5a and cyclinE1 are regulated by non-canonical Wnt signaling.  相似文献   

19.
We have previously shown that lens regeneration from the pigmented epithelium of the dorsal iris in the adult newt eye proceeds in two steps after lens removal or intraocular FGF2 injection. The FGF2-dependent proliferation of iris pigmented epithelium and activation of early lens genes that occur over the entire circumference of the iris comprise the first step, while subsequent dorsally confined lens development marks the second step. Here, we investigated the expression of Wnt and Wnt receptor Frizzled genes in lens-regenerating iris tissues. Wnt2b and Frizzled4 were activated only in the dorsal half of the iris in synchrony with the occurrence of the second step, whereas Wnt5a and Frizzled2 were activated in both halves throughout the period of the first and second steps. Cultured explants of the iris-derived pigmented epithelium in the presence of FGF2 underwent dorsal-specific lens development fully recapitulating the in vivo lens regeneration process. Under these conditions, Wnt inhibitors Dkk1, which specifically inhibits the canonical signal pathway, and/or sFRP1 repressed the lens development, while exogenous Wnt3a, which generally activates the canonical pathway like Wnt2b, stimulated lens development from the dorsal iris epithelium and even caused lens development from the ventral iris epithelium, albeit at a reduced rate. Wnt5a did not elicit lens development from the ventral epithelium. These observations indicate that dorsal-specific activation of Wnt2b determines the dorsally limited development of lens from the iris pigmented epithelium.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号