首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 515 毫秒
1.
In the first experiment, the effect of the stress of blood collection (via tail vessel puncture) on serum luteinizing hormone (LH) was evaluated in six nonsuckled first calf Brangus heifers. The animals were bled on days 22 and 31 postpartum at 15 minute intervals for a period of two hours. Blood was processed to yield serum and analyzed for LH via radioimmunoassay (RIA). There were no significant differences or fluctuations in serum LH levels between bleeding periods or between cows. Serum LH concentrations in nonsuckled cows were not affected by the stress of blood collection. In the second experiment, 24 first calf Brangus heifers were randomly assigned to one of four treatment groups. Treatment 1 cows were suckled once daily for approximately 30 min starting day 21 postpartum. Treatment 2 cows were suckled twice daily for approximately 30 min each time, starting 21 days postpartum. Treatment 3 cows were suckled once daily for approximately 30 min starting 30 days postpartum. Treatment 4 cows were suckled twice daily for approximately 30 min each time starting 30 days postpartum. Each cow was bled via tail vessel puncture on days one and nine following the start of each treatment. The blood sampling regime was similar to that used in Experiment 1 and consisted of four presuckling samples taken at 15 min intervals, one midsuckling sample (the calf was allowed to suckle for 15 min) and four postsuckling samples taken at 15 min intervals. Blood was collected, processed to yield serum and assayed for LH via RIA. Suckling intensity (SI) was found to have a significant effect on serum LH levels. The once daily suckled cows had higher (P<.01) mean serum LH levels than did the twice daily suckled cows (1.70 +/- .03 and 1.53 +/- .03 ng/ml, respectively). The LH concentrations decreased (P<.01) from the first to last bleeding time (BT). The mean serum LH levels for the presuckling, midsuckling and the first postsuckling samples were higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last postsuckling sample. The mean serum LH level for the first time period prior to suckling was higher (P<.05) than the last two periods after suckling (1.73 +/- .08 ng/ml vs 1.51 +/- .06 and 1.41 +/- .06 ng/ml). Bleeding day (BD) and weaning day (WD) did not alter serum LH levels. The interactions found to be significant (P<.01) were SIxBD, SIxWD, BDxWD and BTxSIxBDxWD.  相似文献   

2.
Luteinizing Hormone (LH) levels were quantitated by radioimmunoassay (RIA) in six mature, long-term ovariectomized cows each of Brahman (B), Brahman × Hereford (B×H) and Hereford (H) breeding following an in-tramuscular injection of 20 mg of Estradiol-17β (E) suspended in corn oil. After E administration all cows were bled via coccygeal venipuncture every two hours from 0–8 hours post-injection, every hour from 9–24 hours post-injection, concluding with bleedings every two hours from 26–36 hours post-injection. An LH surge was observed in 5/6 B cows, 6/6 B×H cows and 6/6 H cows. Basal LH levels (mean of first eight data points of each breed type) did not differ (P>.10) between B (3.5 ng/ml), B×H (2.4 ng/ml) and H (2.4 ng/ml). Elapsed time from E injection to peak LH value varied significantly (P<.05) between B, B×H and H, respectively (27.8 hrs, 23.8 hrs, 22.2 hrs). Peak LH values also varied between breed (B, 20.2 ng/ml; B×H, 36.0 ng/ml; H, 113.2 ng/ml: P<.005). The area under the LH curve differed significantly between B, B×H and H (P<.05), however, the duration of the LH surge was not different between breeds; B (13.2 hrs), B×H (16.2 hrs) and H (15.3 hrs). Overall significant period effects (P<.05), breed effects (P<.10) and period × breed interactions (P<.05) were found. In summary, B are less reactive to a 20 mg dose of E than are B×H or H using the following criteria: time to peak LH value, peak LH value and area under the LH curve. These data strongly indicate inherent differences between breeds regarding estrogen feedback mechanisms at the hypophysial-hypothalamic axis.  相似文献   

3.
Six Brahman (B), six Brahman x Hereford (BxH) and six Hereford (H) chronically ovariectomized cows were injected intramuscularly with 20 mg of estradiol-17beta (E2). The cows were bled via coccygeal vessel puncture immediately before E2 injection, every 2 hr from 0 to 8 hr post-injection, every hr from 9 to 24 hr post-injection and every 2 hr from 26 to 36 hr post-injection. Serum prolactin (PRL) concentrations were quantitated by a validated radioimmunoassay. All cows exhibited a PRL surge following the E2 injection. A PRL surge was defined as a sustained elevation in PRL of at least one standard deviation above the level of PRL before the rise. Nadir levels of PRL prior to the surge did not differ significantly between breeds. Time (hr) to the onset of the E2-induced PRL surge was 5.0, 5.0 and 6.2 in B, BxH and H, respectively (P<.10). Elapsed time (hr) from E2 injection to the PRL peak level varied (P<.01) between B (10.8) and H (17.8) and BxH (11.8) and H. Peak PRL levels (ng/ml) varied (P<.10) between breeds (B, 70.6; BxH, 123.9; H, 49.4). Area under the PRL curve (sq cm) varied (P<.05) between BxH (45.2) and H (24.7) but not between BxH and B (34.3; P>.10) or B and H (P>.10). Duration (hr) of the PRL surge did not differ significantly between breeds (B, 19.3; BxH, 20.5; H, 21.2). Overall, bleeding period effects (P<.01), breed effects (P<.10), and breed x period interactions (P<.01) were found.  相似文献   

4.
Pluriparous suckled Brahman and Angus cows were utilized to evaluate the effect of breed, day after calving and endogenous opioid peptides (EOP) on hormonal profiles during postpartum anestrus. On Days 17 and 34 after calving, blood samples with and without heparin were collected at 15- and 30-min intervals, respectively, for a 7-h period via jugular cannula. Two hours after the start of blood sampling, cows of each breed were administered either 1 mg/kg iv naloxone or saline. Three hours later, all animals received 10 ng/kg iv GnRH. On Day 34 after calving cows received 0.2 IU/kg iv ACTH. Mean LH, basal LH and area under the LH curve increased (P < 0.01) from Day 17 to Day 34 after calving. Height of LH pulses increased (P < 0.05) by Day 34 after calving. Brahman cows had higher (P < 0.05) mean LH, basal LH, LH pulse frequency and area under the LH curve than Angus cows. Naloxone increased postchallenge area under the LH curve in treated cows above that of control cows (P < 0.06). Naloxone also increased the postchallenge area under the LH curve above that of the prechallenge level (P < 0.01). No breed differences in the response to the naloxone challenge were observed. The LH response to naloxone challenge occurred earlier on Day 34 than on Day 17 after calving but the amount of LH released was similar between days. The GnRH-induced LH release was greater in Brahman than in Angus cows (P < 0.04). Mean cortisol concentrations and area under the cortisol curve decreased (P < 0.05) between Day 17 and Day 34 after calving. Mean cortisol concentrations and area under the cortisol curve were lower (P < 0.01) in Brahman than in Angus cows. Cortisol secretion after ACTH treatment was similar between Brahman and Angus cows. The cortisol response after ACTH challenge was positively correlated (r=0.68; P < 0.001) to the prechallenge area under the cortisol curve. Under optimal environmental conditions Brahman cows have a greater LH release and their anterior hypophysis is more sensitive to GnRH challenge than the Angus cows.  相似文献   

5.
The effect of endogenous opioid peptides (EOP) and individual animal temperament on serum luteinizing hormone (LH) were investigated in seasonally anestrous Brahman heifers (n = 24). Animals that had shown behavioral estrus in previous months but that had not returned to estrus for at least 30 d were selected. The heifers were ranked by temperament (tame = 1, normal = 2, wild = 3) and randomly allotted into three groups. Blood was collected from one heifer of each group per day. Blood samples were taken via jugular cannula every 15 min for 6 h and every 30 min for another 4 h. After the first hour of sampling, the heifers received intravenous saline (SAL, n = 8); naloxone (LN, 0.5 mg/kg i.v., n = 8); or naloxone (HN, 1.0 mg/kg i.v., n = 8). Three hours after naloxone treatment, each heifer was given gonadotropin releasing hormone (GnRH, 100 mug i.m.). All samples were processed to yield serum and were assayed for LH by radioimmunoassay (RIA). Hourly samples were assayed for cortisol by RIA. The area under the LH curve 60 min postnaloxone treatment was higher in LN and HN than in SAL (57.0 and 40.8 vs 6.1 units; P<0.01); and the area under the 180 min postnaloxone curve remained higher in LN than in SAL (106.2 vs 35.1 units; P<0.05). Cortisol concentrations 60 min postnaloxone administration were above prenaloxone levels(38.2 vs 26.7 ng/ml; P<0.0002). Temperament scores of heifers were positively correlated with cortisol release. The area under the cortisol curve had a negative correlation with mean LH. Serum LH concentrations appear to be suppressed by EOP in seasonally anestrous Brahman heifers, and EOP appear to reduce serum cortisol concentrations. Excitable heifers had higher concentrations of serum cortisol, which negatively affected serum LH concentrations.  相似文献   

6.
Two experiments were conducted to examine the effects of repeated low-dose injections of gonadotropin releasing hormone (GnRH) 30 to 40 d post partum on reproductive characteristics in multiparous suckled Brahman cross cows. In Experiment I, 39 cows were injected (i.v.) with GnRH (5 mug/injection) at 2-h intervals for either 0 (control), 6, 12, or 24 h at 30 to 37 d post partum. GnRH injections for short periods (6h) increased the number of cows exibiting estrus within 45 d of treatment, but cows injected for 24 h failed to exhibit estrus during this period. The period from treatment to first estrus was shorter in the 6-h GnRH group compared to the control group. Injections for 6h significantly (P < 0.05) increased in serum luteinizing hormone (LH) concentrations 1 d after GnRH treatment. In Experiment II we examined the effect of i.v. GnRH injections (5 mug/injection at 2-h intervals) for 6h in a larger group of cows (n = 70). The days from treatment to first estrus were reduced (P < 0.05) in GnRH-treated cows; however, first-service conception rates were significantly lower (P < 0.01) in treated compared to control cows (46.4 and 80.0%, respectively). The results led us to believe that GnRH injections for short periods reduce postpartum interval to first estrus, but fertility at first estrus is lowered.  相似文献   

7.
The response of serum luteinizing hormone (LH) to morphine, naloxone and gonadotropin-releasing hormone (GnRH) in ovariectomized, suckled (n=4) and nonsuckled (n=3) cows was investigated. Six months after ovariectomy and calf removal, the cows were challenged with 1mg, i.v. naloxone/kg body weight and 1 mg i.v. morphine/kg body weight in a crossover design; blood was collected at 15-minute intervals for 7 hours over a 3-day period. To evaluate LH secretion and pituitary responsiveness, 5 mug of GnRH were administered at Hour 6 on Day 1. On Days 2 and 3, naloxone or morphine was administered at Hour 3, followed by GnRH (5 mug/animal) at Hour 6. Mean preinjection LH concentrations (3.6 +/- 0.2 and 4.7 +/- 0.2 ng/ml), LH pulse frequency (0.6 +/- 0.1 and 0.8 +/- 0.1 pulses/hour) and LH pulse amplitude (2.9 +/- 0.5 and 2.9 +/- 0.6 ng/ml) were similar for suckled and nonsuckled cows, respectively. Morphine decreased (P < 0.01) mean serum LH concentrations (pretreatment 4.2 +/- 0.2 vs post-treatment 2.2 +/- 0.2 ng/ml) in both suckled and nonsuckled cows; however, mean serum LH concentrations remained unchanged after naloxone. Nonsuckled cows had a greater (P < 0.001) LH response to GnRH than did suckled cows (area of response curve: 1004 +/- 92 vs 434 +/- 75 arbitrary units). We suggest that opioid receptors are functionally linked to the GnRH secretory system in suckled and nonsuckled cows that had been ovariectomized for a long period of time. However, gonadotropin secretion appears not to be regulated by opioid mechanisms, and suckling inhibits pituitary responsiveness to GnRH in this model.  相似文献   

8.
This study evaluated the effect of exogenous PGF(2)alpha on circulating LH concentrations in postpartum multiparous (n = 32) and primiparous (n = 46) Brahman cows. The cows were randomly allotted within parity and calving date to receive 0, 1, 2 or 3 mg im PGF(2)alpha (alfaprostol)/100 kg body weight (BW), with or without GnRH on Day 30 after calving. Blood samples were collected at weekly intervals from calving through treatment. Serum progesterone concentrations were determined using RIA procedures to assure that only anestrous cows were treated. Sterile marker bulls were maintained with cows on Coastal bermudagrass pastures until the first estrus was detected. Multiparous cows had a shorter (P < 0.05) interval from calving to estrus than did primiparous cows. Serum LH was affected by time (P < 0.0001), PGF(2)alpha dose (P < 0.0002), GnRH (P < 0.0001), parity by PGF(2)alpha dose (P < 0.0003), PGF(2)alpha dose by GnRH (P < 0.0009), parity by GnRH (P < 0.0008), and by parity by PGF(2)alpha dose by GnRH (P < 0.0005). Multiparous cows not receiving GnRH had higher mean serum LH (P < 0.02), LH peak pulse height (P < 0.03), and area under the LH release curve (P < 0.03) compared with primiparous cows. The number of LH pulses/6 h was greater (P < 0.06) in multiparous than primiparous cows, and was greater (P < 0.02) in multiparous cows receiving 3 mg/100 kg BW than in cows receiving 2 mg/100 kg BW, but not in the controls or in cows receiving 1 mg/100 kg BW. Exogenous GnRH resulted in increased (P < 0.0001) serum LH concentrations in all cows, and LH was enhanced (P < 0.0009) by simultaneous treatment with PGF(2)alpha. Primiparous cows had a greater response (P < 0.0005) to PGF(2)alpha and GnRH compared with multiparous cows. Pituitary release of LH in response to GnRH was enhanced by simultaneous exposure to PGF(2)alpha in Day 30 postpartum cows.  相似文献   

9.
Angus (n=6), Brangus (5/8 Angus x 3/8 Brahman, n=6), and Brahman x Angus (3/8 Angus x 5/8 Brahman, n=6) heifers exhibiting estrous cycles at regular intervals were used to determine if the percentage of Bos indicus breeding influenced the secretory patterns of LH in response to a GnRH treatment on Day 6 of the estrous cycle. Heifers were pre-synchronized with a two-injection PGF(2 alpha) protocol (25 mg i.m. Day -14 and 12.5 mg i.m. Day -3 and -2 of experiment). Heifers received 100 microg GnRH i.m. on Day 6 of the subsequent estrous cycle. Blood samples were collected at -60, -30, and -1 min before GnRH and 15, 30, 60, 90, 120, 150, 180, 240, 300, 360, 420, and 480 min after GnRH to determine concentrations of serum LH. Estradiol concentrations were determined at -60, -30, and -1 min before GnRH. On Day 6 and 8, ovaries were examined by ultrasonography to determine if ovulation occurred. On Day 13, heifers received 25 mg PGF(2 alpha) i.m. and blood samples were collected daily until either the expression of estrus or Day 20 for heifers not exhibiting estrus to determine progesterone concentrations. There was no effect (P>0.10) of breed on ovulation rate to GnRH as well as size of the largest follicle, mean estradiol, and mean corpus luteum volume at GnRH. Mean LH was greater (P<0.05) for Angus (7.0+/-0.8 ng/mL) compared to Brangus (4.6+/-0.8 ng/mL) and Brahman x Angus (2.9+/-0.8 ng/mL), which were similar (P>0.10). Mean LH peak-height was similar (P>0.10) for Brangus (13.9+/-3.4 ng/mL) compared to Angus (21.9+/-3.4 ng/mL) and Brahman x Angus (8.0+/-3.4 ng/mL), but was greater (P<0.05) for Angus compared to Brahman x Angus. Interval from GnRH to LH peak was similar (P>0.10) between breeds. As the percentage of Bos indicus breeding increased the amount of LH released in response to GnRH on Day 6 of the estrous cycle decreased.  相似文献   

10.
The objectives of this experiment were to determine if a postcastration increase in concentrations of LH occurs in nutritionally anestrous beef cows and to examine the relationship between body energy reserves and secretion of LH and insulin-like growth factor-I (IGF-I). Nonpregnant, nonlactating, Hereford cows were fed to maintain (M) body weight (BW), body condition score (BCS), and normal estrous cycles (n = 5) or were fed a restricted (R) diet for 26 wk to lose BW and BCS and to become anestrus (n = 10). At 5-7 wk after the initiation of anestrus, R cows were randomly allotted to be ovariectomized (OVX) via flank incision (n = 5) or to remain intact (INT, n = 5). OVX was performed when R cows became anestrous. All M cows were OVX. Serum was collected frequently the day before and during the first 10 days after OVX, and concentrations of progesterone, estradiol, LH and IGF-I were quantified. On Day 10 after OVX, 1 mg of estradiol was injected into 3 cows from each group and serum was collected for 30 h. After OVX, there was a treatment-by-day effect for mean serum LH and IGF-I concentrations. Concentrations of LH increased (p less than 0.01) and concentrations of IGF-I decreased (p less than 0.05) in M-OVX cows when compared with R-OVX and R-INT cows. Concentrations of LH and IGF-I were similar for R-OVX and R-INT cows. The number of LH pulses was similar for M and R cows.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
Administering gonadotropin-releasing hormone (GnRH) improved conception rates in our previous studies. Our objective was to determine if the effect of GnRH was mediated through serum luteinizing hormone (LH) and/or by altered secretion of serum progesterone (P) and estradiol-17 beta (E) during the periestrual and post-insemination periods. Cattle were given either GnRH (n = 54) or saline (n = 55) at 72 h and inseminated artificially (AI) 80 h after the second of two injections of either prostaglandin F2 alpha or its analog, cloprostenol. Progesterone and E were measured in blood serum collected during 3 wk after AI (estrus) from 60 females. Blood was collected for LH determinations via indwelling jugular cannulae from 14 cows and 11 heifers. Collections were taken every 4 h from 32 to 108 h after the second PGF injection (PGF-2) (periestrual period) and at more frequent intervals during 240 min after administration of GnRH (n = 18) or saline (n = 7). Ten females had a spontaneous preovulatory LH surge before GnRH treatment (GnRH-spontaneous), whereas GnRH induced the preovulatory LH surge in six females. A spontaneous LH surge appeared to be initiated in two heifers at or near the time of GnRH treatment (spontaneous and/or induced). The remaining seven cows had spontaneous LH surges with no subsequent change in LH after saline treatment. Serum P during the 21 days after estrus was lower (p less than 0.05) in both pregnant and nonpregnant (open) cattle treated previously with GnRH compared with saline. Serum P during the first week after estrus was greater (p less than 0.01) and increased (p less than 0.05) more rapidly in saline controls and in GnRH-spontaneous cattle than in those exhibiting GnRH-induced or GnRH-spontaneous and/or-induced surges of LH. Conception rate of cattle receiving GnRH was higher (p = 0.06) than that of saline-treated controls. These data suggest that GnRH treatment at insemination initiated the preovulatory LH surge in some cattle, but serum P in both pregnant and open cows was compromised during the luteal phase after GnRH treatment. Improved fertility may be associated with delayed or slowly rising concentrations of serum progesterone after ovulation.  相似文献   

12.
The response of serum luteinizing hormone (LH) to naloxone, an opiate antagonist, and gonadotropin-releasing hormone (GnRH) was measured in cows in late pregnancy to assess opioid inhibition of LH. Blood samples were collected at 15-min intervals for 7 h. In a Latin Square arrangement, each cow (n = 6) received naloxone (0, 0.5, and 1.0 mg/kg BW, i.v.; 2 cows each) at Hour 2 on 3 consecutive days (9 +/- 2 days prepartum). GnRH (7 ng/kg body weight, i.v.) was administered at Hour 5 to all cows on each day. Mean serum LH concentrations (x +/- SE) before naloxone injection were similar (0.4 +/- 0.1 ng/ml), with no serum LH pulses observed during the experiment. Mean serum LH concentrations post-naloxone were similar (0.4 +/- 0.1 ng/ml) to concentrations pre-naloxone. Mean serum LH concentrations increased (p less than 0.05) following GnRH administration (7 ng/kg) and did not differ among cows receiving different dosages of naloxone (0 mg/kg, 1.44 +/- 0.20; 0.5 mg/kg, 1.0 +/- 0.1; 1.0 mg/kg, 0.9 +/- 0.1 ng/ml). In Experiment 2, LH response to naloxone and GnRH was measured in 12 ovariectomized cows on Day 19 of estrogen and progesterone treatment (5 micrograms/kg BW estrogen: 0.2 mg/kg BW progesterone) and on Days 7 and 14 after steroid treatment. On Day 19, naloxone failed to increase serum LH concentrations (Pre: 0.4 +/- 0.1; Post: 0.4 +/- 0.1 ng/ml) after 0, 0.5, or 1.0 mg/kg BW.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

13.
It is well known that feeding disorders are deeply related to reproductive dysfunction, and some feeding regulatory factors may modulate the reproductive function. We examined the effect of orexins, the newly discovered orexigenic hypothalamic neuropeptides, on the pulsatile secretion of LH to clarify their influence on the reproductive function. We administered orexins or saline into the third ventricle of bilaterally ovariectomized (OVX) rats, and measured the serum LH concentration by RIA in blood samples drawn every 6 min for 2 hours to analyze the pulsatile secretion. In the orexin-treated groups, the mean LH concentration and the pulse frequency were significantly reduced (p < 0.01), but the pulse amplitude did not differ significantly. These data indicate that orexins suppress the pulsatile secretion of LH by influencing GnRH neurons at the hypothalamic level.  相似文献   

14.
The object of our experiments was to characterize the response of plasma follicle stimulating hormone (FSH) within minutes of an i.v. injection of high or low doses of gonadotrophin releasing hormone (GnRH), especially in relation to contemporary changes in luteinizing hormone (LH) concentrations. In the deep anoestrous period (June), three intact ewes and two ovariectomized ewes were injected with 1 mug synthetic GnRH followed 2 h later by a second identical injection. A week later, the same regimen was repeated with the same sheep but with 50 mug GnRH after an interval of 5 h 20 min. Blood samples were collected every 15 sec for 15 min after each injection (early release), then at longer intervals (main release) till the next treatment, followed by sampling for a further 6-h period after the second treatment. FSH was released as soon as the second minute after GnRH injection in all ewes. The mean pituitary FSH response, during this early release, in intact and ovariectomized ewes was similar after either 1 or 50 mug GnRH. However, the main release was less pronounced in the ovariectomized sheep and was not stimulated after the second treatment in all sheep. Three other ewes were injected with 40 mug GnRH and sampled every 15 sec for seven, 6-min periods during the period of release to compare FSH and LH secretion. The profiles reflected a similarity in sensitivity and responsiveness to GnRH, especially soon after GnRH injection. Increases in both hormones were formed by several grouped associated spikes. It is suggested that a readily releasable pool of FSH exists in the ewe. There are probably differences in the mechanisms of synthesis and/or release between pituitary FSH and LH.  相似文献   

15.
Suckling may prolong the anovulatory period postpartum by 1) a neural-mediated inhibition of luteinizing hormone-releasing hormone (LHRH)-induced gonadotropin secretion, or 2) an inhibitory effect of hormones released by suckling on gonadotropin secretion and/or action at the ovary. In the present investigation we considered whether a suckling event caused 1) acute inhibition of luteinizing hormone (LH) and follicle-stimulating hormone (FSH) secretion, and 2) release of glucocorticoids and/or prolactin (PRL). Six Hereford cows remained intact and six were ovariectomized (ovx) on day 7 postpartum. Calves remained with their dams continuously. Cows were bled at 10-min intervals during 6 consecutive hr on days 14, 28 and 42 postpartum. Both LH and FSH were released episodically by day 14 in intact and ovx cows, but suckling did not acutely affect LH and FSH secretion. A PRL release accompanied suckling 67, 96 and 95% of the time. However, among all instances where PRL was released on days 14, 28 and 42 postpartum, 67, 29 and 37% occurred independent of a suckling event. Glucocorticoids were not released by suckling in intact cows but were released in ovx cows. We conclude that suckling does not acutely affect LH or FSH concentrations in serum of cows postpartum, that PRL concentrations usually increase in serum coincident with suckling but can be released at other times, and suckling-induced glucocorticoid release depends upon the presence of the ovary.  相似文献   

16.
Twenty-two estrous cyclic, 2-yr-old Brahman heifers were randomly assigned to receive either estrus synchronization with Syncro-Mate-B((R)) (SMB; 11) or no treatment (Control; 11). Blood samples were collected via tail vessel puncture at onset of estrus and daily thereafter until Day 11 after estrus. Blood samples were also collected from five SMB and five Control heifers at 0, 4, 8 and 12 h after the onset of estrus. All samples were processed to yield serum and stored at -20 degrees C until radioimmunoassay. Heifers were inseminated by one technician using semen from a single ejaculate of a Brahman bull 12 h after the onset of estrus. All SMB heifers exhibited estrus within 72 h of implant removal. All heifers had corpora lutea (CL) detected by rectal examination 8 to 12 d following estrus. Serum luteinizing hormone (LH) was not affected by treatment, time (4 - h intervals) or an interaction of treatment by time (P > 0.10). Independent analysis with h indicated that at h 12, SMB (2.2 +/- 0.06 ng/ml) had lower LH than did control heifers (8.9 +/- 2.1 ng/ml). Serum progesterone increased from Day 1 through Day 12 in all heifers, which is indicative of functional CL. Serum progesterone was affected by treatment (P < 0.0001) and time (d intervals; P < 0.10). Progesterone elevation was lower (P < 0.05) and area under the progesterone curve was lower (P < 0.03) in SMB (5.6 +/- 0.5 ng/ml, 32.0 +/- 4.5 units, respectively) when compared with control heifers (7.0 +/- 4 ng/ml, 43.7 +/- 2.4 units, respectively). Conception rate was lower (P < 0.01) in SMB heifers (2 of 11) than in control heifers (8 of 11). The lowered conception rate in SMB treated Brahman heifers may be due to altered timing of LH release following estrus, resulting in an altered time of ovulation.  相似文献   

17.
Orexins, the novel hypothalamic neuropeptides that stimulate feeding behavior, have been shown to suppress the pulsatile secretion of LH in ovariectomized rats. However, the mechanism of this action is still not clear. We examined the effect of naloxone, a specific opioid antagonist, on the suppression of the pulsatile secretion of LH by orexins to determine whether beta-endorphin is involved in this suppressive effect. We administered orexins intracerebroventricularly and injected naloxone intravenously in ovariectomized rats, and we measured the serum LH concentration to analyze the pulsatile secretion. Administration of orexin-A significantly reduced the mean LH concentration and the pulse frequency, but coadministration of naloxone significantly restored the mean LH concentration and the pulse frequency. Administration of orexin-B also significantly reduced the mean LH concentration and the pulse frequency, and coadministration of naloxone did not restore them. These results indicate that orexin-A, but not orexin-B, suppresses GnRH secretion via beta-endorphin.  相似文献   

18.
Two experiments were conducted to determine whether treatments with gonadotropin releasing hormone (GnRH) during the early postpartum period in suckled cows would induce ovulation and initiate regular estrous cycles. In Experiment I, 0, 100 or 200mug of GnRH was given to 22 suckled Angus x Holstein cows at three and again at five weeks postpartum. Serum luteinizing hormone (LH) responses did not differ between cows given 100 or 200mug of GnRH. Treatment with GnRH tended to increase the percentage of cows exhibiting estrus by 30 and 60 days postpartum, but reproductive performance during the breeding season did not differ among groups. In Experiment II, 70 suckled Hereford cows were given either no treatment or 200mug of GnRH at 7 weeks postpartum. Cows given GnRH received either no treatment prior to GnRH or were separated from their calves for 24 hr prior to GnRH treatment. Half of the cows that were separated from their calves also received progesterone via a progesterone intravaginal device (PRID) for 12 days prior to calf removal. Treatment with GnRH alone tended to increase the percentage of anestrous cows which ovulated by 8 days after treatment. Calf removal did not increase the ovulatory response to GnRH, but PRID treatment did. More estrous periods were detected in GnRH-treated cows than in control cows during 20 days after GnRH treatment.  相似文献   

19.
The long-term negative feedback effects of sustained elevations in circulating estradiol and progesterone on the pulsatile secretion of gonadotropin-releasing hormone (GnRH) and luteinizing hormone (LH) were evaluated in the ewe following ovariectomy during the mid-late anestrous and early breeding seasons. GnRH secretion was monitored in serial samples of hypophyseal portal blood. Steroids were administered from the time of ovariectomy by s.c. Silastic implants, which maintained plasma concentrations of estradiol and progesterone at levels resembling those that circulate during the mid-luteal phase of the estrous cycle; control ewes did not receive steroidal replacement. Analysis of hormonal pulse patterns in serial samples during 6-h periods on Days 8-10 after ovariectomy disclosed discrete, concurrent pulses of GnRH in hypothalamo-hypophyseal portal blood and LH in peripheral blood of untreated ovariectomized ewes. These pulses occurred every 97 min on the average. Treatment with either estradiol or progesterone greatly diminished or abolished detectable pulsatile secretion of GnRH and LH, infrequent pulses being evident in only 3 of 19 steroid-treated ewes. No major seasonal difference was observed in GnRH or LH pulse patterns in any group of ewes. Our findings in the ovariectomized ewe provide direct support for the conclusion that the negative-feedback effects of estradiol and progesterone on gonadotropin secretion in the ewe include an action on the brain and a consequent inhibition of pulsatile GnRH secretion.  相似文献   

20.
Ten primiparous crossbred cows were assigned to two dietary groups at calving. One group received 120% and the other group received 80% of the National Research Council (NRC) recommended allowance of dietary energy for primiparous cows. At 60 days postpartum, calves were removed from their dams. Blood samples were collected from the cows at 15-min intervals for 8 hr beginning at the time of calf removal and again 24 hr, 48 hr and 72 hr after calf removal. At 72 hr after calf removal, all cows were given 200 ug GnRH intravenously. At calf removal, serum LH concentrations were higher (P<0.01) for cows on 120% (0.9 +/- 0.03 ng/ml) compared to cows on 80% (0.5 +/- 0.03 ng/ml) of recommendations. Serum LH concentrations increased (1.6 +/- 0.1 ng/ml, P<0.01) by 24 hr in cows on the highenergy diet. In contrast, a similar increase was not observed in cows on the low-energy diet until 48 hr after calf removal (1.4 +/- 0.2 ng/ml, P<0.01). These contrasting patterns in serum LH concentrations resulted in a diet by time interaction (P<0.01). Serum LH concentrations increased in both dietary energy groups following GnRH injection, but the response was greater (P<0.01) in cows on the low-energy diet compared to the cows fed the high-energy diet. These results indicate that inadequate dietary energy delays the LH response to calf removal and increases the LH response to exogenous GnRH.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号