首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
Nematodes synthesize two major classes of myosin heavy chains. These heavy chains associate to form only homodimeric myosin molecules, and these myosin homodimers are anti-genically different from one another (Schachat, Garcea and Epstein, 1978). The two myosins may be designated unc-54 myosin, since this species is altered in mutants of the unc-54 locus, and non-unc-54 myosin, since this class is not affected in unc-54 mutants. We present here experiments in which specific anti-myosin IgG and anti-unc-54 myosin IgG are used to locate the two myosins within the same body-wall muscle cells of Caenorhabditis elegans. These results are necessary for further evaluation of the possible functions of the two myosin homodimers in the thick filaments of these muscles.Myosin can be localized to all body-wall and pharyngeal muscle cells using anti-myosin antibody. In longitudinal sections of body-wall muscle, the staining with anti-myosin coincides with the birefringence of A bands that contain thick filaments. Anti-unc-54 myosin stains all body-wall A bands uniformly but does not react with the pharynx. This result demonstrates that unc-54 is located exclusively in body-wall muscle cells of the wild-type strain N2. Non-unc-54 myosin is localized with anti-myosin in all body-wall muscle cells of the unc-54 null mutant E190, as expected; however, unc-54 myosin could not be detected by anti-unc-54 myosin antibody in this mutant.Since we can localize unc-54 myosin and non-unc-54 myosin in all body-wall muscle cells of wild-type and E190, respectively, we conclude that the two myosins must be present in the same muscle cells. In addition, since unc-54 myosin is located in all body-wall A bands, at least some sarcomeres must contain both myosins. This conclusion is consistent with the observations of Garcea, Schachat and Epstein (1978) that wild-type and E190 synthesize similar amounts of non-unc-54 myosin. Within the limits of resolution of our methods, unc-54 myosin is distributed throughout body-wall A bands. We conclude, therefore, that the majority of thick filaments within these A bands must contain unc-54 myosin along their entire length. Possible roles for unc-54 and non-unc-54 myosins in the assembly and organization of thick filaments are discussed.  相似文献   

2.
F Schachat  R L Garcea  H F Epstein 《Cell》1978,15(2):405-411
The body-walls of Caenorhabditis elegans contain two different myosin heavy chains (Epstein, Waterston and Brenner, 1974) that associate to form at least two species of myosin (Schachat, Harris and Epstein, 1977a). To better define the distribution of these heavy chains in myosin molecules, we have characterized the myosin of C. elegans by immunochemical methods. Specific, precipitating anti-myosin antibody has been prepared in rabbits using highly purified nematode myosin as the immunogen. The difference in reactivity of the anti-myosin antibody with wild-type myosin containing both kinds of heavy chains (designated unc-54 and non-unc-54 heavy chains on the basis of genetic specification) and myosin from the mutant E190 that lacks unc-54 heavy chains Indicates that there are antigenic differences between myosin molecules containing unc-54 heavy chains and myosin molecules containing only non-unc-54 heavy chains. Antibody specific for the unc-54 myosin determinants has been prepared by the immunoadsorption of anti-myosin antibody with E190 myosin. This specific anti-unc-54 myosin antibody precipitates myosin that contains only unc-54 heavy chains. At the limits of resolution of our immunoprecipitation techniques, we could detect no heterodimeric myosin molecules containing both unc-54 and non-unc-54 heavy chains. The body-wall myosins of C. elegans therefore exist only as homodimers of either class of heavy chain.This specific anti-unc-54 myosin antibody promises to be a valuable tool in elucidating the role of two myosins in body-wall muscle and in molecular characterizations of mutant myosins in C. elegans. We report here the use of this antibody to detect antigenic differences between unc-54 myosin from the wild-type and the muscle mutant E675. In conjunction with the original anti-myosin antibody, other studies show that both unc-54 and non-unc-54 myosins exist within the same body-wall muscle cells (Mackenzie, Schachat and Epstein, 1978) and that both myosins are coordinately synthesized during muscle development in C. elegans (Garcea, Schachat and Epstein, 1978). We discuss the implications of the self-association of unc-54 and non-unc-54 myosin heavy chains into homodimeric myosins within the same body-wall muscles with respect to the assembly of thick filaments and their organization into a regular lattice.  相似文献   

3.
In this paper we examine the role of two myosins in body-wall muscle cells of the nematode Caenorhabditis elegans. Large populations of nematodes are synchronized, and the synthesis and accumulation of myosin heavy chains and total protein are followed through postmitotic larval development. Growth is exponential with time for both the wild-type N2 and the body-wall muscledefective mutant E675, with a longer doubling time for the mutant. Utilizing the electrophoretic polymorphism of the E675 myosin heavy chains, we show that distinguishable classes of heavy chains accumulate differentially throughout development. Immunochemical measurements confirm a similar result in N2. Total myosin heavy chain accumulation is also quantitatively similar for the two strains. Myosin heavy chain relative synthetic rates as determined by pulse-labeling are constant throughout development and are equivalent for the two strains. The final fraction of accumulated unc-54 to total heavy chains of approximately 0.63 equals the constant synthetic fraction of approximately 0.62.Since myosin heavy chain accumulation and relative synthesis are equivalent, we conclude that the turnover of heavy chains is also similar in N2 and E675 despite the extensive structural and functional disruption within body-wall muscle cells of the latter strain. Since the accumulated fraction of unc-54 myosin heavy chains reaches a plateau at the constant synthetic fraction, myosin accumulation In the body-wall muscle cells may be attributed to a constant ratio of synthetic rates of the two body-wall myosin species. The coordinate synthesis of two myosins in the same body-wall muscle cells is discussed.  相似文献   

4.
Despite the prevalence of developmental myopathies resulting from muscle fiber defects, the earliest stages of myogenesis remain poorly understood. Unc45b is a molecular chaperone that mediates the folding of thick-filament myosin during sarcomere formation; however, Unc45b may also mediate specific functions of non-muscle myosins (NMMs). unc45b Mutants have specific defects in striated muscle development, which include myocyte detachment indicative of dysfunctional adhesion complex formation. Given the necessity for non-muscle myosin function in the formation of adhesion complexes and premyofibril templates, we tested the hypothesis that the unc45b mutant phenotype is not mediated solely by interaction with muscle myosin heavy chain (mMHC). We used the advantages of a transparent zebrafish embryo to determine the temporal and spatial patterns of expression for unc45b, non-muscle myosins and mMHC in developing somites. We also examined the formation of myocyte attachment complexes (costameres) in wild-type and unc45b mutant embryos. Our results demonstrate co-expression and co-regulation of Unc45b and NMM in myogenic tissue several hours before any muscle myosin heavy chain is expressed. We also note deficiencies in the localization of costamere components and NMM in unc45b mutants that is consistent with an NMM-mediated role for Unc45b during early myogenesis. This represents a novel role for Unc45b in the earliest stages of muscle development that is independent of muscle mMHC folding.  相似文献   

5.
Mutants affecting paramyosin in Caenorhabditis elegans   总被引:17,自引:0,他引:17  
Four mutants of Caenorhabditis elegans with abnormal muscle structure are described which are alleles of a single locus unc-15. In one of the mutants, E1214, paramyosin is completely absent from both body-wall and pharyngeal musculature. In the other three mutants paramyosin is present but does not assemble into thick filaments. Instead paramyosin paracrystals are formed in the body-wall muscle cells. Myosin filaments lacking paramyosin cores are present in all four mutants, but these filaments fail to integrate stably into the myofilament lattice. One mutant is temperature-sensitive; all four are semi-dominant in their effect on muscle structure. The hypothesis that unc-15 is the structural gene for paramyosin is discussed.  相似文献   

6.
A mutant affecting the heavy chain of myosin in Caenorhabditis elegans   总被引:41,自引:0,他引:41  
A set of non-complementing, closely linked, ethyl methanesulphonate-induced mutations in Caenorhabditis elegans specifically affects the structure and function of body-wall muscle cells but not the pharyngeal musculature. One of these mutations, e675, is semidominant and results in the production of a new protein of about 203,000 molecular weight in addition to normal myosin at about 210,000 Mr. The abnormal polypeptide chain is structurally very similar to normal myosin heavy chain when maps of iodinated peptides are compared.The E675 mutant shows a clear relation between defective movement, disruption of the body-wall muscle structure, and the molecular defect in the myosin heavy chains. The altered chain is synthesized in heterozygotes, suggesting that the e675 mutation is either in a structural gene for the heavy chain or in a cis acting control element. The hypothesis that there are two classes of myosin heavy chain within the same cells is discussed.  相似文献   

7.
The vertebrate sarcomere is a complex and highly organized contractile structure whose assembly and function requires the coordination of hundreds of proteins. Proteins require proper folding and incorporation into the sarcomere by assembly factors, and they must also be maintained and replaced due to the constant physical stress of muscle contraction. Zebrafish mutants affecting muscle assembly and maintenance have proven to be an ideal tool for identification and analysis of factors necessary for these processes. The still heart mutant was identified due to motility defects and a nonfunctional heart. The cognate gene for the mutant was shown to be smyd1b and the still heart mutation results in an early nonsense codon. SMYD1 mutants show a lack of heart looping and chamber definition due to a lack of expression of heart morphogenesis factors gata4, gata5 and hand2. On a cellular level, fast muscle fibers in homozygous mutants do not form mature sarcomeres due to the lack of fast muscle myosin incorporation by SMYD1b when sarcomeres are first being assembled (19hpf), supporting SMYD1b as an assembly protein during sarcomere formation.  相似文献   

8.
Myosin purified from the body-wall muscle-defective mutant E675 of the nematode. Caenorhabditis elegans, has heavy chain polypeptides which can be distinguished on the basis of molecular weight. On SDS-polyacrylamide gels, bands are found at 210,000 and 203,000 daltons. This is in contrast to myosin from the wild-type, N2, which has a single heavy chain band at 210,000 daltons. Both heavy chains of E675 are found in body-wall muscle (Epstein, Waterston and Brenner, 1974).When native myosin from E675 is fractionated on hydroxyapatite, it is separated into myosin containing predominantly one or the other molecular weight heavy chain and myosin containing a mixture of the heavy chains. Comparison of the CNBr fragments of myosin that contains predominantly 210,000 dalton heavy chains with those of myosin that contains predominantly 203,000 dalton heavy chains reveals multiple differences. These differences are not explained by the difference in molecular weight of the heavy chains, but may be explained if each type of heavy chain is the product of a different structural gene. Furthermore, because there are fractions which exhibit >80% 210,000 or >80% 203,000 dalton heavy chain, there is myosin which is homogeneous for each of the heavy chains.Although N2 myosin has only a single molecular weight heavy chain, it too is fractionated by hydroxyapatite. By comparing the CNBr fragments of different myosin fractions, we show that N2, like E675, has two kinds of heavy chains.E190, a body-wall muscle-defective mutant in the same complementation group as E675, is lacking the myosin heavy chain affected by the e675 mutation. This property has allowed us to determine by co-purification of labeled E190 myosin in the presence of excess, unlabeled E675 myosin that most, if not all, of the myosin that contains two different molecular weight heavy chains is due to the formation of complexes between homogeneous myosins and not to a heterogeneous myosin.  相似文献   

9.
The sarcomeres of skeletal and cardiac muscle are highly structured protein arrays, consisting of thick and thin filaments aligned precisely to one another and to their surrounding matrix. The contractile mechanisms of sarcomeres are generally well understood, but how the patterning of sarcomeres is initiated during early skeletal muscle and cardiac development remains uncertain. Two of the most widely accepted hypotheses for this process include the “molecular ruler” model, in which the massive protein titin defines the length of the sarcomere and provides a scaffold along which the myosin thick filament is assembled, and the “premyofibril” model, which proposes that thick filament formation does not require titin, but that a “premyofibril” consisting of non-muscle myosin, α-actinin and cytoskeletal actin is used as a template. Each model posits a different order of necessity of the various components, but these have been difficult to test in vivo. Zebrafish motility mutants with developmental defects in sarcomere patterning are useful for the elucidation of such mechanisms, and here we report the analysis of the herzschlag mutant, which shows deficits in both cardiac and skeletal muscle. The herzschlag mutant produces a truncated titin protein, lacking the C-terminal rod domain that is proposed to act as a thick filament scaffold, yet muscle patterning is still initiated, with grossly normal thick and thin filament assembly. Only after embryonic muscle contraction begins is breakdown of sarcomeric myosin patterning observed, consistent with the previously noted role of titin in maintaining the contractile integrity of mature sarcomeres. This conflicts with the “molecular ruler” model of early sarcomere patterning and supports a titin-independent model of thick filament organization during sarcomerogenesis. These findings are also consistent with the symptoms of human titin myopathies that exhibit a late onset, such as tibial muscular dystrophy.  相似文献   

10.
《The Journal of cell biology》1987,105(6):2763-2770
The nematode Caenorhabditis elegans contains two major groups of muscle cells that exhibit organized sarcomeres: the body wall and pharyngeal muscles. Several additional groups of muscle cells of more limited mass and spatial distribution include the vulval muscles of hermaphrodites, the male sex muscles, the anal-intestinal muscles, and the gonadal sheath of the hermaphrodite. These muscle groups do not exhibit sarcomeres and therefore may be considered smooth. Each muscle cell has been shown to have a specific origin in embryonic cell lineages and differentiation, either embryonically or postembryonically (Sulston, J. E., and H. R. Horvitz. 1977. Dev. Biol. 56:110-156; Sulston, J. E., E. Schierenberg, J. White, and J. N. Thomson. 1983. Dev. Biol. 100:64- 119). Each muscle type exhibits a unique combination of lineage and onset of differentiation at the cellular level. Biochemically characterized monoclonal antibodies to myosin heavy chains A, B, C, and D and to paramyosin have been used in immunochemical localization experiments. Paramyosin is detected by immunofluorescence in all muscle cells. Myosin heavy chains C and D are limited to the pharyngeal muscle cells, whereas myosin heavy chains A and B are localized not only within the sarcomeres of body wall muscle cells, as reported previously, but to the smooth muscle cells of the minor groups as well. Myosin heavy chains A and B and paramyosin proteins appear to be compatible with functionally and structurally distinct muscle cell types that arise by multiple developmental pathways.  相似文献   

11.
Mutants in the unc-54 gene of Caenorhabditis elegans have been characterized by cyanylation and sodium dodecyl sulphate/polyacrylamide gel electrophoresis of the total myosin present in each mutant. In the recessive mutants lacking a major fraction of the total myosin, the high molecular weight doublet of 15 × 104 and 14 × 104 which dominates the cyanylation pattern of the total wild-type myosin is absent. In the mutant E675, which possesses a novel heavy-chain with a molecular weight of 2 × 105, each component of the cyanylation doublet is reduced by 104 daltons, indicating that the doublet is derived from partial cleavage of a single polypeptide chain. This suggests that unc-54 is the structural gene for a myosin heavy-chain present in a major fraction of the total nematode myosin.  相似文献   

12.
Limulus paramyosin and myosin were localized in the A bands of glycerinated Limulus striated muscle by the indirect horseradish peroxidase-labeled antibody and direct and indirect fluorescent antibody techniques. Localization of each protein in the A band varied with sarcomere length. Antiparamyosin was bound at the lateral margins of the A bands in long (~ 10.0 µ) and intermediate (~ 7.0 µ) length sarcomeres, and also in a thin line in the central A bands of sarcomeres, 7.0–~6.0 µ. Antiparamyosin stained the entire A bands of short sarcomeres (<6.0). Conversely, antimyosin stained the entire A bands of long sarcomeres, showed decreased intensity of central A band staining except for a thin medial line in intermediate length sarcomeres, and was bound only in the lateral A bands of short sarcomeres. These results are consistent with a model in which paramyosin comprises the core of the thick filament and myosin forms a cortex. Differential staining observed using antiparamyosin and antimyosin at various sarcomere lengths and changes in A band lengths reflect the extent of thick-thin filament interaction and conformational change in the thick filament during sarcomeric shortening.  相似文献   

13.
The giant muscle protein titin (connectin) is known to serve as a cytoskeletal element in muscle sarcomeres. It elastically restrains lengthening sarcomeres, it aids the integrity and central positioning of the A-band in the sarcomere and it may act as a template upon which some sarcomeric components are laid down during myogenesis. A puzzle has been how titin molecules, arranged systematically within the hexagonal A-band lattice of myosin filaments, can redistribute through the I-band to their anchoring sites in the tetragonal Z-band lattice. Recent work by Liversage and colleagues has suggested that there are six titin molecules per half myosin filament. Since there are two actin filaments per half myosin filament in a half sarcomere, this means that there are three titin molecules interacting with each Z-band unit cell containing one actin filament in the same sarcomere and one of opposite polarity from the next sarcomere. Liversage et al. suggested that the three titins might be distributed with two on an actin filament of one polarity and one on the filament of opposite polarity. Here, we build on this suggestion and discuss the transition of titin from the A-band to the Z-band. We show that there are good structural and mechanical reasons why titin might be organised as Liversage et al., suggested and we discuss the possible relationships between A-band arrangements in successive sarcomeres along a myofibril.  相似文献   

14.
The differentiation of body-wall muscle cells was studied in the nematode Caenorhabditis elegans. Specific antibodies to myosin and paramyosin, major protein constituents of differentiated muscle, react with mesodermal cells in wild-type embryos towards the end of the first half of embryogenesis. Immunoreactive cells (2–16) first appear in embryos with 400–450 of the 550 cells present at hatching. Such embryos have developed at 25.5°C for 3–412 hr beyond the two-cell stage. As development proceeds, a maximum of 81 immunoreactive cells forms four columns running anterior-posterior. Each column is composed of two lines of tightly opposed round cells, which then elongate into spindle-shaped cells. Mutant embryos in which cleavage arrests prematurely also generate cells that produce myosin and paramyosin. The initiation of muscle differentiation appears to be independent of the number of cell or nuclear divisions within a lineage or of the proliferation of other cells. These results suggest that the biosynthesis of muscle-specific proteins by nematode embryonic muscle cells is regulated by mechanisms intrinsic to these cells.  相似文献   

15.
Myofibrils within skeletal muscle are composed of sarcomeres that generate force by contraction when their myosin-rich thick filaments slide past actin-based thin filaments. Although mutations in components of the sarcomere are a major cause of human disease, the highly complex process of sarcomere assembly is not fully understood. Current models of thin filament assembly highlight a central role for filament capping proteins, which can be divided into three protein families, each ascribed with separate roles in thin filament assembly. CapZ proteins have been shown to bind the Z-disc protein α-actinin to form an anchoring complex for thin filaments and actin polymerisation. Subsequent thin filaments extension dynamics are thought to be facilitated by Leiomodins (Lmods) and thin filament assembly is concluded by Tropomodulins (Tmods) that specifically cap the pointed end of thin filaments. To study thin filament assembly in vivo, single and compound loss-of-function zebrafish mutants within distinct classes of capping proteins were analysed. The generated lmod3- and capza1b-deficient zebrafish exhibited aspects of the pathology caused by variations in their human orthologs. Although loss of the analysed main capping proteins of the skeletal muscle, capza1b, capza1a, lmod3 and tmod4, resulted in sarcomere defects, residual organised sarcomeres were formed within the assessed mutants, indicating that these proteins are not essential for the initial myofibril assembly. Furthermore, detected similarity and location of myofibril defects, apparent at the peripheral ends of myofibres of both Lmod3- and CapZα-deficient mutants, suggest a function in longitudinal myofibril growth for both proteins, which is molecularly distinct to the function of Tmod4.  相似文献   

16.
Fibrinoligase (thrombin- and calcium-activated Factor XIII) from human plasma catalyzes the incorporation of dansylcadaverine and [14C]putrescine into myosin, prepared from either human platelets or rabbit skeletal muscle. At least 9 mol of amine is incorporated per mole of myosin of either type when the enzyme is used under saturating conditions. Both heavy and light chains of the platelet and muscle myosins incorporate dansylcadaverine and [ 14C]putrescine. However, in quantitative terms, the incorporation into the light chains of either type is much less than into the heavy chains. Profound fluorescent changes occurred when dansylcadaverine was bound to myosin. Highly cross-linked platelet and muscle myosin polymers form in the absence of added amines, indicating the presence of both acceptor and donor sites. ATPase activity was not altered by cross-linking of 50–60% of myosin. The nature of the cross-link in myosin was found to be a γ-glutamyl-?-lysine bond, with an average of 19 mol of dipeptide per mole of platelet myosin.  相似文献   

17.
Over 20 mutations in β-cardiac myosin heavy chain (β-MHC), expressed in cardiac and slow muscle fibers, cause Laing early-onset distal myopathy (MPD-1), a skeletal muscle myopathy. Most of these mutations are in the coiled-coil tail and commonly involve a mutation to a proline or a single-residue deletion, both of which are predicted to strongly affect the secondary structure of the coiled coil. To test this, we characterized the effects of two MPD-1 causing mutations: A1603P and K1617del in vitro and in cells. Both mutations affected secondary structure, decreasing the helical content of 15 heptad and light meromyosin constructs. Both mutations also severely disrupted the ability of glutathione S-transferase–light meromyosin fusion proteins to form minifilaments in vitro, as demonstrated by negative stain electron microscopy. Mutant eGFP-tagged β-MHC accumulated abnormally into the M-line of sarcomeres in cultured skeletal muscle myotubes. Incorporation of eGFP-tagged β-MHC into sarcomeres in adult rat cardiomyocytes was reduced. Molecular dynamics simulations using a composite structure of part of the coiled coil demonstrated that both mutations affected the structure, with the mutation to proline (A1603P) having a smaller effect compared to K1617del. Taken together, it seems likely that the MPD-1 mutations destabilize the coiled coil, resulting in aberrant myosin packing in thick filaments in muscle sarcomeres, providing a potential mechanism for the disease.  相似文献   

18.
Mononucleated myoblasts and multinucleated myotubes were obtained by culturing embryonic chicken skeletal muscle cells. Comparison of total polysomes isolated from these mononucleated and multinucleated cell cultures by density gradient centrifugation and electron microscopy revealed that mononucleated myoblasts contain polysomes similar to those contained by multinucleated myotubes and large enough to synthesize the 200,000-dalton subunit of myosin. When placed in an in vitro protein-synthesizing assay containing [3H]leucine, total polysomes from both mononucleated and multinucleated myogenic cultures were active in synthesizing polypeptides indistinguishable from myosin heavy chains as detected by measurement of radioactivity in slices through the myosin band on sodium dodecyl sulfate (SDS)-polyacrylamide gels. Fractionation of total polysomes on sucrose density gradients showed that myosin-synthesizing polysomes from mononucleated myoblasts may be slightly smaller than myosin-synthesizing polysomes from myotubes. Multinucleated myotubes contain approximately two times more myosin-synthesizing polysomes per unit of DNA than mononucleated myoblasts, and the proportion of total polysomes constituted by myosin polysomes is only 1.2 times higher in multinucleated myotubes than it is in mononucleated myoblasts. The results of this study suggest that mononucleated myoblasts contain significant amounts of myosin messenger RNA before the burst of myosin synthesis that accompanies muscle differentiation and that a portion of this messenger RNA is associated with ribosomes to form polysomes that will actively translate myosin heavy chains in an in vitro protein-synthesizing assay.  相似文献   

19.
Sarcomere structure underpins structural integrity, signaling, and force transmission in the muscle. In embryos of the frog Xenopus tropicalis, muscle contraction begins even while sarcomerogenesis is ongoing. To determine whether contractile activity plays a role in sarcomere formation in vivo, chemical tools were used to block acto‐myosin contraction in embryos of the frog X. tropicalis, and Z‐disc assembly was characterized in the paralyzed dicky ticker mutant. Confocal and ultrastructure analysis of paralyzed embryos showed delayed Z‐disc formation and defects in thick filament organization. These results suggest a previously undescribed role for contractility in sarcomere maturation in vivo. genesis 53:299–307, 2015. © 2015 The Authors. Genesis Published by Wiley Periodicals, Inc.  相似文献   

20.
J. Ahnn  A. Fire 《Genetics》1994,137(2):483-498
We have used available chromosomal deficiencies to screen for genetic loci whose zygotic expression is required for formation of body-wall muscle cells during embryogenesis in Caenorhabditis elegans. To test for muscle cell differentiation we have assayed for both contractile function and the expression of muscle-specific structural proteins. Monoclonal antibodies directed against two myosin heavy chain isoforms, the products of the unc-54 and myo-3 genes, were used to detect body-wall muscle differentiation. We have screened 77 deficiencies, covering approximately 72% of the genome. Deficiency homozygotes in most cases stain with antibodies to the body-wall muscle myosins and in many cases muscle contractile function is observed. We have identified two regions showing distinct defects in myosin heavy chain gene expression. Embryos homozygous for deficiencies removing the left tip of chromosome V fail to accumulate the myo-3 and unc-54 products, but express antigens characteristic of hypodermal, pharyngeal and neural development. Embryos lacking a large region on chromosome III accumulate the unc-54 product but not the myo-3 product. We conclude that there exist only a small number of loci whose zygotic expression is uniquely required for adoption of a muscle cell fate.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号