首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Sodium butyrate in millimolar concentrations causes an accumulation of acetylated histone species in a variety of vertebrate cell lines. In all lines tested, butyrate caused hyperacetylation of H3 and H4, and in rat IRC8 cells, H2A and H2B were also affected. In Friend erythroleukemic cells, butyrate also induces the synthesis of a nonhistone chromosomal protein, IP25. Butyrate does not affect the rate of histone acetylation in cell-free extracts or nuclei of Friend cells. Rather, this fatty acid inhibits histone deacetylation. Cell-free extracts of either control cells or butyrate-grown cells contain comparable levels of histone-deacetylating activity. This in vitro activity is inhibited by the addition of butyrate to the extracts. Thus butyrate appears to be an inhibitor of histone deacetylases both in vivo and in vitro.  相似文献   

2.
Dynamic histone acetylation of alfalfa (Medicago sativa) was studied in suspension cultures by short-term labeling with radioactive acetate. The relative labeling rates for the acetylated histones were in order of decreasing incorporation; H3.2 greater than H3.1 greater than H4 greater than H2B.1 greater than H2A.3. Histone H3 showed at least seven sites of acetylation, histone H2B.1 had six sites and histone H4 had five sites. Low numbers of acetylation sites were observed for histone H2B.2 and all histone H2A variants. The mass ratio, steady state acetylation and dynamic acetylation between major variant H3.1 and minor variant H3.2 were approx. 2:1, 1:2 and 2:5, respectively. Treatment of alfalfa cells with 50 mM n-butyrate did not lead to histone hyperacetylation, but instead interfered with histone acetylation labeling by acetate. The extent of apparent inhibition increased with time and concentration of butyrate. It is likely that the conversion of butyrate to acetylCoA results in dilution of the specific radioactivity of [3H]acetate in the acetylCoA pool thereby inhibiting the labeling reaction. This interpretation is supported by 14C-labeling of alfalfa acetylated histones by [1-14C]butyrate.  相似文献   

3.
Histone acetylation is a key modification that regulates chromatin accessibility. Here we show that treatment with butyrate or other histone deacetylase (HDAC) inhibitors does not induce histone hyperacetylation in metaphase-arrested HeLa cells. When compared to similarly treated interphase cells, acetylation levels are significantly decreased in all four core histones and at all individual sites examined. However, the extent of the decrease varies, ranging from only slight reduction at H3K23 and H4K12 to no acetylation at H3K27 and barely detectable acetylation at H4K16. Our results show that the bulk effect is not due to increased or butyrate-insensitive HDAC activity, though these factors may play a role with some individual sites. We conclude that the lack of histone acetylation during mitosis is primarily due to changes in histone acetyltransferases (HATs) or changes in chromatin. The effects of protein phosphatase inhibitors on histone acetylation in cell lysates suggest that the reduced ability of histones to become acetylated in mitotic cells depends on protein phosphorylation.  相似文献   

4.
5.
In order to explore the relationship between unacetylated arginine-rich histones and condensed chromatin structure, the extent of histone acetylation was examined in cultured cell lines derived from three species of deer mice. These species differ considerably in their genomic content of heterochromatin but contain essentially the same euchromatin content. Cells of Peromyscus eremicus, containing 34–36% more constitutive heterochromatin than Peromyscus boylii or Peromyscus crinitus cells were found to contain 28–35% more unacetylated histone H4, 22–29% more unacetylated histone H3, and 18–22% more unacetylated histone H2B. This relationship between unacetylated histones and heterochromatin content was further explored by inducing hyperacetylation of P. eremicus and P. boylii histones through treatment of cells with 15 mM sodium butyrate for 24 h. It was found that the percentages of unacetylated histones H3 and H4 remaining after butyrate treatment were proportional to the amount of constitutive heterochromatin in the genome. These data support the concept that a small core of histones in constitutive heterochromatin is inaccessible to acetylation. It was also found that the acetylated state of isolated histones was sensitive to the method of histone extraction. Thus concern must be given to preparative procedures when studying histone acetylation in order to minimize these acetate losses.  相似文献   

6.
Here we report a detailed analysis of waves of histone acetylation that occurs throughout spermatogenesis in mouse. Our data showed that spermatogonia and preleptotene spermatocytes contained acetylated core histones H2A, H2B and H4, whereas no acetylated histones were observed throughout meiosis in leptotene or pachytene spermatocytes. Histones remained unacetylated in most round spermatids. Acetylated forms of H2A and H2B, H3 and H4 reappeared in step 9 to 11 elongating spermatids, and disappeared later in condensing spermatids. The spatial distribution pattern of acetylated H4 within the spermatids nuclei, analyzed in 3D by immunofluorescence combined with confocal microscopy, showed a spatial sequence of events tightly associated with chromatin condensation. In order to gain an insight into mechanisms controlling histone hyperacetylation during spermiogenesis, we treated spermatogenic cells with a histone deacetylase inhibitor, trichostatin A (TSA), which showed a spectacular increase of histone acetylation in round spermatids. This observation suggests that deacetylases are responsible for maintaining a deacetylated state of histones in these cells. TSA treatment could not induce histone acetylation in condensing spermatids, suggesting that acetylated core histones are replaced by transition proteins without being previously deacetylated. Moreover, our data showed a dramatic decrease in histone deacetylases in condensing spermatids. Therefore, the regulation of histone deacetylase activity/concentration appears to play a major role in controling histone hyperacetylation and probably histone replacement during spermiogenesis.  相似文献   

7.
8.
本文用离体心脏灌流技术研究了丁酸钠对~3H-乙酰基参入大鼠心脏细胞核纽蛋白的影响。用蔗糖梯度离心将大鼠离体灌流心脏的细胞核分为心肌的和非心肌的,分别提取组蛋白。尿素-丙烯酰胺凝胶电泳将组蛋白分为五个组分。其比放射性测定的结果表明,~3H-乙酰基只参入核心组蛋白,程度为H_3>H_(2b)>H_4>H_(2a)。Triton-尿素-丙烯酰胺凝胶电泳图放射自显影结果显示,无论心肌细胞核还是非心肌细胞核,在丁酸钠为1m mol/L情况下,组蛋白H_3又可见三个亚组分(H_(3_1)、H_(3_2)及H_(3_3)),H_4可分出四个亚组分(H_(4_1)、H_(4_2)、H_(4_3)及H_(4_4));其总组蛋白乙酰化程度减低至对照组数值的60%。“冷追击”实验的结果提示,丁酸钠引起高乙酰化组蛋白的积蓄,确是通过其对组蛋白脱乙酰基过程的抑制作用而实现的。  相似文献   

9.
10.
Histone acetylation of Murine Erythroleukemia Cells (MELC) has been re-examined. It is demonstrated that sodium butyrate causes hyperacetylation of core histones in inducible as well as non-inducible MELC strains. This indicates that histone hyperacetylation per se is not sufficient to activate genes. However, [3H]acetate incorporation into core histones of the inducible MELC line F4N increases after induction of differentiation with dimethylsulfoxide (DMSO), in contrast to the non-inducible variant F4+. Thus histone acetylation may play a role as an auxiliary mechanism for gene activation (and inactivation). In addition, the appearance of a histone H3 variant during differentiation of MELC is reported.  相似文献   

11.
12.
The effects of butyrate upon the extents of phosphorylation of histones H1 and H1(0) during cell-cycle progression have been investigated. Chinese hamster (line CHO) cells were synchronized in early S phase and released into medium containing 0 or 15 mM butyrate to resume cell-cycle traverse into G1 of the next cell cycle. Cells were also mechanically selected from monolayer cultures grown in the presence of colcemid and 0 or 15 mM butyrate to obtain greater than 98% pure populations of metaphase cells. Although cell cycle progression is altered by butyrate, electrophoretic patterns of histones H1, H1(0), H3, and H4 indicate that butyrate has little, if any, effect on the extents of H1 and H1(0) phosphorylation during the cell cycle or the mitotic-specific phosphorylation of histone H3. Butyrate does, however, inhibit removal of extraordinary levels of histone H4 acetylation (hyperacetylation) during metaphase, and it appears to cause an increase in the content of H1(0) in chromatin during the S or G2 phases of the cell cycle.  相似文献   

13.
14.
The dominant mutation Su-var(2)1 01 which suppresses position-effect variegation and displays recessive butyrate sensitivity was found to result in significant hyperacetylation of histone H4. This biochemical finding, as well as the genetic properties of this mutation, strongly suggest that the wild-type product of the corresponding locus is involved in histone H4 deacetylation. In larvae containing the suppressor mutation the accessibility of chromatin to endogenous nucleases is significantly increased which might be causally connected with histone H4 hyperacetylation. The suppressor mutation Su-var(2)1 01 has, therefore, to be classified as a chromatin condensation mutation.  相似文献   

15.
Histones were labeled by incubating HeLa cells in the presence of radioactive leucine for 20 hours. Following a 5 hour chase in non-radioactive medium the cells were exposed to 7 mM Na-butyrate to increase the level of histone acetylation. Histones were then extracted, fractionated by high-resolution electrophoresis in acetic acid-urea gels and the specific activity of the parental form of H4 histone and that of each acetylated form was calculated. No differences were found in the specific activities indicating that the major effect of butyrate on histone acetyl levels involves histones which were synthesized before the administration of butyrate. The effect is reversible and within 15 minutes after the removal of the drug most of the acetylated forms of H4 histone are converted to the unmodified form.  相似文献   

16.
A series of suberoylanilide hydroxamic acid (SAHA)-based non-hydroxamates was designed, synthesized, and evaluated for their histone deacetylase (HDAC) inhibitory activity. Among these, methyl sulfoxide 15 inhibited HDACs in enzyme assays and caused hyperacetylation of histone H4 while not inducing the accumulation of acetylated alpha-tubulin in HCT116 cells.  相似文献   

17.
DEAE-Sepharose chromatography of extracts from plasmodia of the myxomycete Physarum polycephalum revealed the presence of multiple histone acetyltransferases and histone deacetylases. A cytoplasmic histone acetyltransferase B, specific for histone H4, and two nuclear acetyltransferases A1 and A2 were identified; A1 acetylates all core histones with a preference for H3 and H2A, whereas A2 is specific for H3 and also slightly for H2B. Two histone deacetylases, HD1 and HD2, could be discriminated. They differ with respect to substrate specificity and pH dependence. For the first time the substrate specificity of histone deacetylases was determined using HPLC-purified individual core histone species. The order of acetylated substrate preference is H2A much greater than H3 greater than or equal to H4 greater than H2B for HD1 and H3 greater than H2A greater than H4 for HD2, respectively; HD2 is inactive with H2B as substrate. Moreover histone deacetylases are very sensitive to butyrate, since 2 mM butyrate leads to more than 50% inhibition of enzyme activity.  相似文献   

18.
The effects of sodium butyrate on [3H]thymidine incorporation and cell growth characteristics in randomly growing and synchronized HeLa S3 cells have been examined in an attempt to determine what effects, if any, butyrate has on S phase cells. Whereas 5 mM sodium butyrate rapidly inhibits [5H]thymidine incorporation in a randomly growing cell populations, it has no effect on incorporation during the S phase in cells synchronized by double thymidine block techniques. This lack of effect does not result from an impaired ability of the S phase cells to take up butyrate, since butyrate administration during this period leads to histone hyperacetylation that is identical with that seen with butyrate treatment of randomly growing cells. Furthermore, the ability to induce such hyperacetylation with butyrate during an apparently normal progression through S phase indicates that histone hyperacetylation probably has no effect on the overall process of DNA replication. Temporal patterns of [3H]thymidine incorporation and cell growth following release from a 24-h exposure to butyrate confirm blockage of cell growth in the G1 phase of the cell cycle. Thus, the inhibition by butyrate of [3H]thymidine incorporation in randomly growing HeLa S3 cell populations can be accounted for solely on the basis of a G1 phase block, with no inhibitory effects on cells already engaged in DNA synthesis or cells beyond the G1 phase block at the time of butyrate administration.  相似文献   

19.
DNA damage detection and repair take place in the context of chromatin, and histone proteins play important roles in these events. Post-translational modifications of histone proteins are involved in repair and DNA damage signalling processes in response to genotoxic stresses. In particular, acetylation of histones H3 and H4 plays an important role in the mammalian and yeast DNA damage response and survival under genotoxic stress. However, the role of post-translational modifications to histones during the plant DNA damage response is currently poorly understood. Several different acetylated H3 and H4 N-terminal peptides following X-ray treatment were identified using MS analysis of purified histones, revealing previously unseen patterns of histone acetylation in Arabidopsis. Immunoblot analysis revealed an increase in the relative abundance of the H3 acetylated N-terminus, and a global decrease in hyperacetylation of H4 in response to DNA damage induced by X-rays. Conversely, mutants in the key DNA damage signalling factor ATM (ATAXIA TELANGIECTASIA MUTATED) display increased histone acetylation upon irradiation, linking the DNA damage response with dynamic changes in histone modification in plants.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号