首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Two experiments were performed to determine the endocrine and ovarian changes in medroxyprogesterone acetate (MAP)-primed ewes after ram introduction. Experiment 1 was performed during the mid-breeding season with 71 ewes primed with an intravaginal MAP sponge for 12 days. While the control (C) ewes (n = 35) were in permanent contact with rams, the ram effect (RE) ewes (n = 36) were isolated for 34 days prior to contact with rams. At sponge withdrawal, all ewes were joined with eight sexually experienced marking Corriedale rams and estrus was recorded over the next 4 days. The ovaries were observed by laparoscopy 4–6 days after estrus. Four weeks later, pregnancy was determined by transrectal ultrasonography. In eight ewes from each group, ovaries were ultrasonographically scanned; FSH, LH, and estradiol-17β were measured every 12 hours until ovulation or 96 hours after estrus. The response to the rams was not affected by the fact that ewes had been kept or not in close contact with males before teasing. No differences were found in FSH, LH, estradiol-17β concentrations, growth of the ovulatory follicle, onset of estrus, ovulation rate, or pregnancy rate. Experiment 2 was performed with 14 ewes during the nonbreeding season. Ewes were isolated from rams for 1 month, and received a 6-day MAP priming. Ovaries were ultrasonographically scanned every 12 hours, and FSH, LH, estradiol-17β, and progesterone were measured. Ewes that ovulated and came into estrus had higher FSH and estradiol-17β levels before introduction of the rams than did ewes that had a silent ovulation. The endocrine pattern of the induced follicular phase of ewes that came into estrus was more similar to a normal follicular phase, than in ewes that had a silent ovulation. The follicle that finally ovulated tended to emerge earlier and in a more synchronized fashion in those ewes that did come into estrus. All ewes that ovulated had an LH surge and reached higher maximum FSH levels than ewes that did not ovulate, none of which had an LH surge. We conclude that (a) the effect of ram introduction in cyclic ewes treated with MAP may vary depending on the time of the breeding season at which teasing is performed; (b) patterns of FSH, and estradiol-17β concentrations, as indicators of activity of the reproductive axis, may be used to classify depth of anestrus; and (c) the endocrine pattern of the induced follicular phase, which is related to the depth of anestrus, may be reflected in the behavioral responses to MAP priming and the ram effect.  相似文献   

2.
《Small Ruminant Research》2009,85(1-3):129-131
The fertility obtained in sheep after the use of intravaginal progesterone devices is related to the content of progesterone of the device. The hypothesis of this study was that the reproductive response of anoestrous ewes to the ram-effect could be improved by the administration of oestradiol-17β in conjunction with CIDRs treatment—using previously used CIDRs in a 5-day progestagen priming. Therefore, the objective was to determine if oestradiol-17β treatment increases fertility of anoestrous ewes primed with used CIDRs and stimulated by the ram-effect. The hypothesis was tested with CIDRs that had been previously used for 12 or 18 days. The trial was performed during the non-breeding season using 158 Corriedale ewes. Ewes had been isolated from rams since Day −35 (Day 0 = introduction of the rams). A CIDR (0.3 g progesterone, InterAg, Hamilton, New Zealand) was inserted on Day −5 in all ewes with CIDR that had been previously used for 12 days (n = 62) or 18 days (n = 96). Also on Day −5, 29 and 53 ewes that had received CIDRs of 12 or 18 days, respectively, received an intra-muscular treatment of 50 μg of oestradiol-17β (E groups). The ewes that did not receive the oestradiol-17β treatment remained as the control group (C group). Overall the treatment groups were thus: C12 (n = 33), C18 (n = 43), E12 (n = 29), and E18 (n = 53). On Day 0 all CIDRs were withdrawn, and ewes were placed with 18 rams and 20 ewes hormonally induced to exhibit oestrus. Sexual receptivity of ewes treated with CIDRs was estimated from marks on the rumps of the ewes daily from Day 0 to Day 5, and the pregnancy status diagnosed with transrectal ultrasonography on Day 40. The percentage of ewes exhibiting oestrus and pregnancy rates were lower in ewes synchronized with previously used CIDRs for 18 days, compared to those used for 12 days. The responses of ewes in oestrus were 39.4, 14.0, 65.5, and 32.1% for the C12, C18, E12, and E18 groups respectively, with pregnancy rates of 30.3, 14.0, 34.5, and 17.0%. Administration of oestradiol-17β increased the frequency of oestrous response in ewes that were treated with CIDRs previously used for 12 days (P < 0.05), but not in those treated with CIDRs used for 18 days. It could be concluded that the administration of oestradiol-17β only improved the percentage of ewes responding to oestrus when CIDRs previously used for 12 days were used for 5 days before the introduction of rams. No positive effect on fertility was observed irrespective of the period during which CIDR had been previously used.  相似文献   

3.
The effects of progesterone on the responses of Merino ewes to the introduction of rams during anoestrus were investigated in two experiments. In the first experiment, the introduction of rams induced an increase in the levels of LH in entire ewes. The mean levels increased from 0.68 +/- 0.04 ng/ml (mean +/- s.e.m.) to 4.49 +/- 1.32 ng/ml within 20 min in ewes not treated with progesterone (n = 10). In ewes bearing progesterone implants that provided a peripheral concentration of about 1.5 ng progesterone per millilitre plasma, the LH response to the introduction of rams was not prevented, but was reduced in size so that the concentration was 1.38 +/- 0.15 ng/ml after 20 min (n = 5). Progesterone treatment begun either 2 days before or 6 h after the introduction of rams and maintained for 4 days prevented ovulation. In the second experiment ovariectomized ewes were used to investigate further the mechanism by which the ram evoked increases in tonic LH secretion. In ovariectomized ewes treated with oestradiol implants, the introduction of rams increased the frequency of the LH pulses and the basal level of LH. In the absence of oestradiol there was no significant change in pulse frequency but a small increase in basal levels. Progesterone again did not prevent but reduced the responses in ewes treated with oestradiol. It is suggested that following the withdrawal of progesterone treatment, the secretion of LH pulses in response to the ram effect would be dampened. This effect could be a component of the reported long delay between the introduction of rams and the preovulatory surge of LH in ewes treated with progesterone. Continued progesterone treatment prevented ovulation, probably by blocking positive feedback by oestradiol.  相似文献   

4.
Introduction of rams to ovariectomized ewes treated with oestradiol implants (N = 10) increased the frequency of LH pulses from 4 X 8 to 10 X 6 pulses per 12 h. This effect was reflected by increases in mean levels of LH and the basal levels upon which the pulses were superimposed. In ewes that had not been treated with oestradiol (N = 5), there was no significant increase in pulse frequency but mean and basal levels of LH increased slightly after the introduction of rams. In a second experiment, similar effects of the introduction of rams were seen in ovariectomized ewes treated with oestradiol or oestradiol + androstenedione (N = 16), but no significant effects of the rams were observed in untreated ewes (N = 8) or ewes treated only with androstenedione (N = 7). No preovulatory surges of LH were observed in the 30-h period after the introduction of rams. It was concluded that the ram stimulus probably evokes the increase in pulse frequency by inhibiting the negative feedback action of oestradiol, and that the surge normally observed in entire ewes is dependent on the ovarian response to these pulses. However, the observation of responses in some ewes not treated with oestradiol also raises the possibility that the ram stimulus can act directly on the hypothalamic neurones that control the secretion of LH, and that this effect is enhanced in the presence of oestrogen.  相似文献   

5.
In late February Dorset rams were introduced (day = 0) to 40 mature Romney ewes that were observed by laparoscopy to be anovular. The ovaries of 20 of these ewes were examined by laparoscopy every second day while the remaining 20 ewes served as unoperated controls. Jugular blood samples were taken daily and plasma progesterone concentrations assayed to provide information on the functional status of any corpora lutea (CL) arising from ovulations stimulated by introduction of the rams. Eighty-five percent (-17/20) of the ewes that were repeatedly laparoscoped had ovulated within 4 days of ram introduction and premature regression of the CL had occurred between days 4 and 8 in 8 ewes and days 6 to 10 in 2 ewes. A second ovulation was observed after or during the premature regression of the first CL and this subsequent CL was maintained for the normal duration. The prematurely regressing CL produced a small peak in progesterone concentration on days 4 to 5 but the concentrations declined on days 6 to 7. In the unoperated ewes 50% (-10/20) appeared, from the progesterone profiles, to have ovulated by day 4 and half of these appeared to have premature CL regression. The interval from introduction of the ram to first oestrus was 23 days in ewes with premature regression of the CL and 19 days in ewes ovulating within 4 days but having no premature regression. From the results it was concluded that the premature regression of the CL is the cause of the delayed interval from ram introduction to first oestrus in Romney ewes and is a major factor contributing to the two peaks of oestrous activity observed after ram introduction.  相似文献   

6.
The ram effect is widely used in Mediterranean breeds of sheep but its use in temperate genotypes is restricted by breed seasonality. However, ewes from these highly seasonal genotypes are sensitive to stimulation by rams close to the onset of the natural breeding season. In this study we developed a pre-mating protocol of repeated, short-term exposure to rams (fence-line contact or vasectomised rams) beginning during late anoestrus and continuing into the breeding season. We hypothesised that this pre-mating protocol would synchronise the distribution of mating of North of England Mule ewes during the breeding season above that observed in ewes isolated from rams prior to mating. Ram-exposed ewes were given contact with rams (Experiment 1: fence-line; FR, n = 94 and Experiment 2: vasectomised rams; VR; n = 103) for 24 h on Days 0 (10 September), 17 and 34 of the experiment. Control ewes (Experiment 1; FC, n = 98 and Experiment 2; VC; n = 106) remained isolated from rams prior to mating. In Experiment 2, a subset of VR (n = 35) and VC ewes (n = 35) were blood sampled twice weekly to monitor their pre-mating progesterone profiles. At mating, harnessed entire rams were introduced, 17 or 16 days after the last ram exposure (Experiments 1 and 2) and raddle marks were recorded daily. The median time from ram introduction to mating was reduced in ewes given both fence-line and vasectomised ram contact (P < 0.001), leading to a more compact distribution of mating and lambing (At least P < 0.01). In the blood sampled VR ewes, there was a progressive decline in the number of days from ram exposure to the onset of dioestrus (at least P < 0.05). This observation indicates that the cycles in VR ewes became increasingly synchronised over the pre-mating period, a pattern not evident in VC ewes. In conclusion, repeated, short-term exposure of ewes to rams during the transition into the breeding season is an effective method of synchronising the distribution of mating during the breeding season.  相似文献   

7.
In this study, we tested whether prior experience with rams would modify the behavioural and endocrine responses of maiden ewes to rams. During mid-anoestrus, sexually na?ve, maiden ewes were exposed to rams for 7 days (ram experienced, RE; n=61) or isolated from rams (ram na?ve, RN; n=63). All ewes were subsequently isolated from rams. In Experiment 1, RE (n=55) and RN (n=57) ewes were introduced to rams during late anoestrus. RE ewes had more total and positive interactions with rams than RN ewes (P<0.001). RE ewes showed more ram seeking behaviour and spent more time in proximity of rams than RN ewes (at least; P<0.05). In Experiment 2, RE (n=6) and RN (n=6) ewes were introduced to rams midway through a frequent blood sampling regime in late anoestrus. Ram introduction stimulated an increase in LH pulse frequency and basal LH in both RE and RN ewes (at least P<0.05). RE ewes had an increase in mean LH concentrations (P<0.01) that failed to reach significance in RN ewes (P<0.1). There was no significant effect of prior experience with rams on LH pulse frequency, amplitude or whether ewes had an LH surge. In conclusion, prior experience with rams is important in developing appropriate ewe-ram interactions but is not a pre-requisite to the endocrine response to the ram effect.  相似文献   

8.
Two experiments were conducted to examine the effects of treating seasonally anoestrous ewes with melatonin before ram introduction on reproductive response, and on LH secretion in anoestrous ewes induced to ovulate by rams.In Experiment 1, a total of 667 ewes from three flocks involving Merino (Flock 1, N = 149), Merino entrefino (Flock 2, N = 325) and Rasa Aragonesa (Flock 3, N = 203) breeds were used. Within each flock, ewes isolated from rams since the previous lambing were assigned at random to receive melatonin implants of Regulin (75, 175 and 105 in Merino, Merino entrefino and Rasa Aragonesa flocks, respectively) or to serve as untreated controls (74 in Merino, 150 in Merino entrefino and 98 in Rasa Aragonesa flocks). Fertile rams were introduced into all flocks 5 weeks after implantation in March (Flocks 1 and 2) or April (Flock 3), and remained with the ewes for a 50 day mating period. Percentage of ewes with luteal activity at ram introduction did not differ between melatonin treated and control ewes in any flock. There were no significant differences in either the mean interval from ram introduction to lambing or the distribution of lambing. Implantation with melatonin resulted in an improvement of prolificacy in all three flocks, although this only reached statistical significance in the Merino flock (1.15 vs. 1.03 in treated and control ewes, respectively, P < 0.05). Fertility was increased significantly (P < 0.05) in the Merino entrefino flock (64.5% in treated vs. 51.3% in control ewes).In Experiment 2, two trials were undertaken utilizing a total of 63 ewes. Trial 1 involved 24 mature Manchega ewes and Trial 2 involved 39 Merino ewe lambs. Half of the animals in each trial received a Regulin implant on 28 February (Trial 1) or 12 March (Trial 2) and the remaining half acted as controls. Rams were introduced 5 weeks after implantation and remained with the ewes for a 25 day period. In both trials, anoestrous ewes at ram introduction were bled at 20 min intervals for 3 h before and 5 h after ram introduction and then at 3 h intervals over the next 24 h for assessment of plasma concentrations of LH. Secretion of LH before or following introduction of rams was not affected by melatonin. Both treated and control anoestrous ewes in each trial responded to introduction of rams with an increase in the frequency of the LH pulses (P < 0.05), but no significant changes were detected in pulse amplitude or mean levels of LH. A preovulatory surge of LH was detected between 8 and 26 h after ram introduction, but neither mean interval from ram introduction to the peak of LH surge, nor the magnitude of the LH peak, was influenced by melatonin treatment.Results from this study show that: (1) melatonin implants administered during early seasonal anoestrus have the potential to improve reproductive performance in Spanish breeds of sheep, but the response is conditioned by breed, management system and environmental factors; (2) melatonin did not modify the secretion of LH in anoestrous ewes induced to ovulate by the ram effect under our experimental conditions.  相似文献   

9.
Rasa Aragonesa ewes were used to evalutate whether treatment with melatonin implants in spring could modify: (i) the response to the male effect in terms of oestrous behaviour and ovulation rate; and (ii) the maintenance of sexual activity and ovulation rate at medium term, i.e. over the next 306 days. On 12 April, 42 ewes were divided into two groups, with (M; n = 21) or without (C; n = 21) a subcutaneous implant containing 18 mg melatonin. On 17 May (day 0), three aproned rams were introduced to each group to induce a ram effect. Ewes were observed for oestrus daily. The rams were removed 40 days later after which one aproned ram was introduced daily. Oestrous detection continued until 28 February, 306 days after the first male-female contact. The ovulation rate was determined by endoscopy in the first three cycles after ram introduction and in September-October and January. Progesterone was assayed from blood samples taken on 6 May, 10 and from day 0 to day 22 after ram introduction. Luteal activity before ram introduction was seen in 33% (M) and 29 (C)% of the ewes, respectively. Significantly more M ewes showed oestrous behaviour during the first 40 days after ram introduction (M: 100%; C: 62%; P < 0.01). Similar differences were observed for ewes anovulatory at ram introduction (M: 100%, C: 47%; P < 0.01). These differences were maintained over the three oestrous cycles in both groups. Treatment with melatonin implants was without detrimental effect on cyclic functions in the following breeding season, after seasonal anoestrus. Melatonin treatment significantly increased (P < 0.05) the mean ovulation rate of the first (1.62 +/- 0.11 versus 1.31 +/- 0.13), second (1.78 +/- 0.15 versus 1.36 +/- 0.15) and third cycles (M: 1.73 +/- 0.12 versus C: 1.27 +/- 0.14). There was a significant interaction between the effects of cyclicity at day 0 and melatonin treatment on the ovulation rate in the first cycle (P < 0.05). The mean ovulation rates of both groups were similar at the beginning (September) and middle (January) of the subsequent breeding season. Overall, the results confirmed that melatonin implants, combined with the ram effect, improved the reproductive parameters of reduced-seasonality ewes during spring mating, without impairing sexual activity or ovulation rate during the subsequent breeding season.  相似文献   

10.
Ewes of the Préalpes-du-Sud breed (n=112) were mated with fertile rams and were used to investigate the effect of the presence of vasectomized rams during pregnancy on reproductive outcomes. Ewes in the control group (n=56) were isolated from rams during the whole period of pregnancy, whereas those in the experimental group (n=56) were kept with vasectomized rams from day 10 post-mating until lambing. At day 10 post-mating, a series of blood samples was collected every 15 min for 8 h from five control ewes and five experimental ewes to determine their patterns of LH secretion. The introduction of the ram was associated with a rapid increase of pulsatile LH release. The lag between the introduction of the ram and the onset of the first episodic LH release was less than 15 min. The mean(±sem) number of LH pulses/4 h after the introduction of the ram (2.8±0.4) was significantly higher (P<0.01) than that observed/4 h before the introduction of the ram (1.4±0.2). Although more ewes were pregnant in the control group (87.5%) than in the ram-exposed group (82.1%), the difference was not significant. The presence of rams did not affect gestation length (145.8 days), overall lamb mortality (3.5%) or birth weights of single (3.96 kg), twin (3.24 kg) or triplet (2.59 kg) lambs. The proportion of ewes with multiple births in the control group (69.4%) was significantly greater (P<0.05) than that in the ram-exposed ewes (47.8%). The ewes in the control group had significantly more (P<0.01) twin lambs born alive (72.3%) than the ewes in the ram-exposed group (50.0%). In conclusion, the presence of vasectomized rams during early pregnancy affected the incidence of multiple births but did not affect pregnancy rate or gestation length. The altered fertility of ewes exposed to vasectomized rams may reflect changes in embryonic loss during early pregnancy.  相似文献   

11.
The melanin-concentrating hormone (MCH) is a neuropeptide synthesized by neurons of the lateral hypothalamus and incerto-hypothalamic area that project throughout the central nervous system. The aims of the present report were: (1) to determine if MCH levels in cerebrospinal fluid (CSF) of ewes vary between the mid-luteal and the oestrous phase of spontaneous oestrous cycles; and (2) to study if MCH levels in CSF of ewes vary acutely during the follicular phase induced with the ram effect in anoestrous ewes. In the first experiment, CSF was collected from 8 adult ewes during spontaneous oestrous and during the mid-luteal phase (8-10 days after natural oestrus). In the second experiment, performed during the mid non-breeding season, a follicular phase was induced with the ram effect. After isolating a group of 16 ewes from rams, CSF was obtained from 5 of such ewes (control group). Three rams were joined with the ewes, and samples were obtained 12h (n=6) and 24h (n=5) later. In Experiment 1, there were no differences in MCH concentrations in CSF measured during the mid-luteal phase and spontaneous oestrus (0.14 ± 0.04 vs. 0.16 ± 0.05 ng/mL respectively). In Experiment 2, MCH concentrations tended to increase 12h after rams introduction (0.15 ± 0.08 vs. 0.35 ± 0.21 ng/mL, P=0.08), and increased significantly 24h after rams introduction (0.37 ± 0.15 ng/mL, P=0.02). We concluded that MCH concentration measured in the CSF from ewes increased markedly during the response to the ram effect but not during the natural oestrous cycle of ewes.  相似文献   

12.
Three experiments were conducted on anestrous ewes of Suffolk, Dorset, and Katahdin breeding to examine the potential value of GnRH to improve ovulation and pregnancy in response to introduction of rams. In Experiment 1, treatment with GnRH 2 d after treatment with progesterone (P4; 25 mg i.m.) at introduction of rams was compared to treatment with P4 alone at the time of introduction of rams. Treatment with GnRH did not increase percentages of ewes with a corpus luteum (CL) 14 d after introduction of rams, pregnant 32 d after treatment with PGF2α 14 d after introduction of rams, or percent of treated ewes lambing to all services. In Experiment 2, treatments with GnRH on day 2, 7, or both after introduction of rams were compared. Treatments did not differ in mean estrous response, percentages of ewes with a detectable CL or number of CL present on day 11, or mean pregnancy and lambing rates. Therefore, neither one nor two injections of GnRH at these times appeared to be effective to induce anestrous ewes to breed. In Experiment 3, treatments compared included GnRH 4 d before introduction of rams, GnRH 4 d before and 1 d after introduction of rams, ram introduction alone, and treatment with P4 (25 mg i.m.) at the time of introduction of rams. Percentages of ewes with concentrations of P4 greater than 1 ng/mL (indicating formation of CL had occurred) 7 d after ram introduction tended to be greater (P < 0.07) in ewes treated with GnRH or P4 than in control ewes treated with ram introduction alone. However, there was no difference in P4 concentrations between groups by day 11 or 12 after introduction of rams. Estrous response rates and percentages of ewes pregnant 95 d after PGF2α was administered (on day 12 after introduction of rams) tended to be greater (P = 0.08 and 0.06, respectively) in ewes treated with GnRH or P4 than in ewes exposed to rams only. There was no difference in response variables between ewes treated with GnRH 4 d before introduction of rams and ewes treated with GnRH 4 d before and 1 d after introduction of rams. In conclusion, treatment with GnRH 4 d before ram introduction showed promise as an alternative to treatment with P4 to improve the ovulatory response and reproductive performance of ewes introduced to rams during seasonal anestrus.  相似文献   

13.
Diurnal variation in the response of anoestrous ewes to the ram effect   总被引:2,自引:0,他引:2  
The re-introduction of rams after a period of separation was used to stimulate LH secretion and induce ovulation in seasonally anovulatory ewes maintained under natural photoperiod. In 2 experiments, the rams were introduced in the morning or the evening to test for diurnal variations in responsiveness to the treatment. In the first experiment, with Romanov ewes, the ram-induced increase in tonic LH secretion was significantly earlier in the ewes treated (N = 6) at 07:30 h (mean +/- s.e.m. delay to first pulse: 20 +/- 6 min) than in those (N = 5) treated at 19:30 h (66 +/- 15 min; P = 0.006). The pulse interval after the ram effect was significantly shorter in ewes that subsequently ovulated (120 +/- 10 min) than in ewes that did not ovulate (288 +/- 108 min; P = 0.043). There was a significant decline in pulse amplitude from 6.7 +/- 1.2 to 3.4 +/- 0.6 ng/ml (both groups combined) after the introduction of rams (P = 0.040). Of the 11 ewes, 7 subsequently ovulated and a preovulatory LH surge was observed in 6 of these 30-36 h after ram introduction. In the second experiment, with seasonally anoestrous Préalpes-du-Sud ewes, the effect of the timing of the introduction of rams on the periovulatory events was tested. The delay to the onsets of oestrus and the LH surge was not affected, but the ovulation rate was higher after ram introduction in the morning (1.42) than in the evening (1.14). In the 12-h period before the introduction of the rams in the first experiment, there was a difference between the groups in the secretion of LH, but the existence of diurnal rhythms in the concentrations of LH or FSH were not confirmed in a later study in which 7 ewes were sampled every 20 min for 36 h. In contrast, there was a distinct diurnal variation in the secretion of prolactin, with the highest values being recorded at night and the lowest around midday (P = 0.025). The rise and fall in prolactin values did not appear to coincide with dawn or dusk.(ABSTRACT TRUNCATED AT 400 WORDS)  相似文献   

14.
Anestrous ewes respond to the introduction of rams with either an ovulation within 2-3 days that may be followed by luteal phases of normal or short length, with delayed ovulations (5-6 days later), or with the luteinization of follicles. The aim of this work was to study the relationship between the growth status of the largest follicle present when rams are introduced and the type of ovarian response in non-treated ewes and in ewes treated with estradiol-17beta before ram introduction. Thirteen anestrous Corriedale ewes were divided into 2 groups: E2 (n = 7) and C (n = 6). The E2 ewes received a single dose of 50 microg estradiol-17beta 5 days before the introduction of the rams to synchronize the onset of their follicle waves, while C ewes remained untreated. When the rams were introduced, all E2 ewes had the largest follicle in a growing stage in contrast with the C ewes (3 out of 6; P < 0.05). Five C and 4 E2 ewes ovulated after the introduction of the rams (Day 3.4 +/- 0.4 for C vs. 4.8 +/- 0.3 for E2 ewes, respectively, P < 0.05). Only one ewe from each group developed a normal luteal phase: 4 C and 3 E2 ewes had short luteal phases. One C ewe and 2 E2 ewes had short luteal phases originating from follicles that did not ovulate. After the first luteal phase, all ewes returned to anesirus without a second ovulation or luteal phase. The remaining E2 ewe did not ovulate or show any changes in progesterone serum concentrations. We conclude that the growth status of the largest follicle alone does not determine the ovarian responding pattern of anestrous ewes to the ram effect.  相似文献   

15.
Application of the ram effect during the breeding season has been previously disregarded because the ewe reproductive axis is powerfully inhibited by luteal phase progesterone concentrations. However, anovulatory ewes treated with exogenous progestagens respond to ram introduction with an increase in LH concentrations. We therefore tested whether cyclic ewes would respond to ram introduction with an increase in pulsatile LH secretion at all stages of the estrous cycle. We did two experiments using genotypes native to temperate or Mediterranean regions. In Experiment 1 (UK), 12 randomly cycling, North of England Mule ewes were introduced to rams midway through a frequent blood-sampling regime. Ewes in the early (EL; n=3) [corrected] and late luteal (LL; n=6) phase responded to ram introduction with an increase in LH pulse frequency and mean and basal concentration [corrected] of LH (at least P<0.05). In Experiment 2 (Australia), the cycles of 32 Merino ewes were synchronised using intravaginal progestagen pessaries. Pessary insertion was staggered to produce eight ewes at each stage of the estrous cycle: follicular (F), early luteal (EL), mid-luteal (ML) and late luteal (LL). In all stages of the cycle, ewes responded to ram introduction with an increase in LH pulse frequency (P<0.01); EL, ML and LL ewes also had an increase in mean LH concentration (P<0.05). In conclusion, ram introduction to cyclic ewes stimulated an increase in pulsatile LH secretion, independent of ewe genotype or stage of the estrous cycle.  相似文献   

16.
Two experiments were conducted to examine the effects of ram exposure during the breeding season, in combination with progestagen treatment on estrus synchronization, fertility the LH surge and ovulation in ewes. Experiment 1 was subdivided into experiments 1a and 1b. In all experiments cross-bred ewes were treated with an intravaginal sponge for 12-14 days and three days before sponge withdrawal ewes were divided into control (no further treatment; n=191, 103 and 50 for experiments 1a, 1b and 2, respectively) or ram exposed (three mature rams per 50 ewes were introduced; +Ram; n=187, 99 and 49 for experiments 1a, 1b and 2, respectively). At sponge withdrawal ewes in Experiments 1a and 2 received 500 IU eCG and rams were removed from all the +Ram groups. In Experiments 1a and 1b, raddled, entire rams were introduced to ewes 48 h after sponge withdrawal. The timing of mating was recorded and ewes were maintained until lambing. In Experiment 2, estrus behavior was determined every 4 h and the time of the LH surge and ovulation were determined from a subset of 10 ewes per group. In Experiment 1a, less +Ram ewes were bred by 48 h after ram introduction (control 98% versus +Ram 89%, P<0.001) and in Experiments 1a and 1b 14% fewer (P<0.05) of the ewes bred in the first 3 h after ram introduction lambed to that service. In Experiment 1a, ram exposed ewes had a lower litter size than control ewes (1.93+/-0.06 versus 1.70+/-0.06 lambs per ewe; P<0.05). In Experiment 2, rams advanced (P<0.05) estrus, the LH surge and ovulation by 2-6 h compared with control ewes. We speculate that exposure of ewes to rams increased LH secretion and that this in turn increased follicle development and the production of oestradiol that led to a more rapid onset of estrus, the LH surge and ovulation compared to control ewes. Unexpectedly, ewes that were bred had lower fertility in the +Ram groups than control groups.  相似文献   

17.
《Applied Animal Ethology》1984,11(3):283-289
The experiment was designed to test the hypothesis that social interaction between rams influenced their serving capacity and modified their preference for ewes.The serving capacity and the preference for particular ewes was recorded on the first and seventh day of joining in 8 rams mated either individually or in pairs to 12 oestrous ewes. The serving capacity (mean number ejaculates/hour) was 50% lower in both dominant and submissive rams when working together compared with single-sire matings. However, when working together, 33% of the available ewes were served by the submissive ram and 12.5% were served by the dominant ram so that, in total, more ewes were served (total mean number ± SE of ewes served/ram when mated either individually or as a pair = 4.50 ± 0.89 and 5.50 ± 0.57, respectively). This resulted from a modification in ewe preference by the submissive ram.In the absence of competition, the same ewes were observed to be preferred by most rams. This ewe “attractiveness” was found not to be a permanent characteristic, as the preferred ewes at one oestrus were not necessarily those most preferred at a subsequent oestrus.  相似文献   

18.
Progestogen pretreatment and introduction of rams were used to prepare 432 Rasa aragonesa ewes for synchronization of estrus with prostaglandin (PG) during anestrus. The experiment was a 3 x 3 x 2 factorial with lactation status, ram/progestogen treatment and treatment with pregnant mare's serum gonadotropin (PMSG; 250 IU) at injection of PG as main effects. At ram introduction (Day 0), ewes were dry (Group 1), weaned (Group 2) or suckling a lamb (Group 3). They received either norgestomet implants for 12 d (Days -12 to Day 0 (Group A), ram introduction for 12 d (Days 0 to 12) (Group B) or both (Group C). Half the ewes received PMSG with PG (100 mug Cloprostenol) on Day 12. Pregnancy rate was higher at first service in dry (Group 1; 42%) than in recently-weaned ewes (Group 3; 24% and Group 2; 31%; P<0.01). Occurrence of estrus and conception and pregnancy rates to first service were higher (P<0.01) in ewes previously exposed to rams (Groups B and C) than in ewes treated only with progestogen (Group A). There were no effects of PMSG, no interactions among the three variables and no differences in prolificacy (1.12 at first service).  相似文献   

19.
The objective of this study was to highlight the problems that arise during the reproduction between thin-tailed rams and fat-tailed ewes. At the same time, particular emphasis laid on the influence of sheep breed, sheep age, time after ram introduction and day of the ewe estrus cycle on ram and ewe sexual behaviour. Rams were subjected to sexual performance tests by being individually exposed to 12 ewes for 3 h daily, 19 consecutive days. The 16 rams of the experiment were separated according to their age (9 and 21 months old) and breed (Chios and Karagouniki), and the 96 ewes of Chios fat-tailed breed, were divided by age (9 and 21 months old). The main characteristics of courtship behaviour, like sniffing, nudging, flehmen response and following were recorded and studied in detail. Mature Chios rams, which were the only one with previous experience of Chios ewes, exhibited higher rates of sexual interest per ewe than the other rams (P < 0.05). On the other hand, rams sniffed and nudged more young than mature ewes (P < 0.05), probably due to the fact that young ewes did not express intense symptoms of estrus. Young rams exhibited substandard sexual interest towards mature ewes, when they first came in contact with them (P < 0.05). In general, Karagouniki thin-tailed rams exhibited reduced rates of mating behaviour when they courted with Chios fat-tailed ewes in comparison with Chios rams (P < 0.05). Moreover, as the time after ram introduction passed, the frequency and duration of sexual behaviour components decreased (P < 0.001). Finally, the effect of the day of the experiment was only significant in the case of sniffing, which increased during the first 2 days and then declined and stabilized (P < 0.01). As it was demonstrated, ram age and ram breed played a fundamental role in the exhibition of sexual interest elements.  相似文献   

20.
Synchronisation of oestrus in Karagouniki ewes by administration of the standard dose of progesterone results in lower fertility than observed when these ewes ovulate naturally. This suggests that the optimum dose of progesterone may be breed dependent. The exogenous progesterone may perturb the concentrations of oestradiol-17beta and progesterone in blood plasma and the oviductal wall. This possibility was investigated using Karagouniki ewes allocated at random to three treatments (n=4 per treatment). Ewes were allowed to exhibit natural oestrus (N) or oestrus was synchronised by administration of 250 mg (LP) or 375 mg (HP) progesterone (subcutaneous implants) followed by PMSG at 8 mg/kg live weight i.m. 14 days later. Oestrus was observed using teaser rams. Blood samples were collected for plasma oestradiol-17beta and progesterone assay from the onset to the end of oestrus at 2 h intervals. The uterus of each ewe was recovered at the end of oestrus and samples of the oviductal wall were taken from both oviducts and prepared, separately, for progesterone and oestradiol-17beta assay. Statistical analysis was performed using univariate analysis of variance. Plasma oestradiol-17beta concentrations from the onset to the end of oestrus were highest for N ewes and lowest for HP ewes with the values for LP ewes occupying an intermediate position. The differences were significant (P<0.05) between HP and the other two treatments from 4 to 12 h after the onset of oestrus and then between all treatments until the end of oestrus. Plasma progesterone levels were similar and fairly constant from the onset to the end of oestrus for N and LP. The plasma progesterone levels for HP were significantly (P<0.05) higher than for the other two treatments throughout oestrus. In oviductal wall samples, the oestradiol-17beta concentration was significantly (P<0.05) higher for N ewes than for synchronised ewes and the levels were similar for LP and HP ewes. The concentration of oestradiol-17beta differed (P<0.05) between right and left oviducts for N ewes but not for ewes of either of the synchronised oestrus treatments. Progesterone concentrations in oviductal wall samples were highest (P<0.05) for HP ewes and the values for N and LP ewes were similar. The concentration of progesterone did not differ between right and left oviductal wall samples within treatments. It was concluded that the higher dose of exogenous progesterone perturbed the levels of oestradiol-17beta and progesterone in blood plasma and the oviductal wall, and this could explain the lower levels of fertility (relative to naturally occurring oestrus) observed when this protocol is used for Karagouniki ewes in practice.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号