首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
The cohesive termini of the DNA genome of the lactococcal bacteriophage c2 were directly sequenced and appeared to be complementary, non-symmetrical, 9-nucleotide single-stranded, 3 extended DNAs, with the following sequence: 5-GTTAGGCTT-3 3-CAATCCGAA-5. DNA located on either side of the cohesive ends was sequenced and several repeats and a region with the potential for a DNA bend were found. Previously sequenced cos regions of 13 other bacteriophages were also examined for similar sequence features. All of the bacteriophages from gram-positive hosts had 3 extended DNA termini, in contrast to the bacteriophages from gram-negative hosts, which had 5 extended DNA termini. All bacteriophages had a region of dyad symmetry close to the cohesive termini. A 7.3 kb DNA fragment of the c2 genome containing the cos sequences was cloned; transduction experiments demonstrated that these cloned sequences could act as a substrate for packaging enzymes of phage c2.  相似文献   

2.
Bacteriophages of the family Myoviridae represent one of the most widespread domains of the biosphere substantially affecting the ecological balance of microorganisms. Interestingly, sequence analysis of genomic DNAs of large bacteriophages revealed many genes coding for proteins with unknown functions. A new approach is proposed to improve the functional identification of genes. This approach is based on comparing the genome sequence for phylogenetically and morphologically related phages showing no considerable homology at the level of genomic DNA. It is assumed that gene functions essential for the development of phages of a given family are conserved and that the corresponding genes code for similar orthologous proteins even when lacking sequence homology. The genome was sequenced and compared for two Pseudomonas aeruginosa giant bacteriophages, KZ and EL, which belong to a group of KZ-related phages. A substantial difference in genome organization was observed, suggesting specific features of phage evolution. In addition, the problem of the minimal genome of the superfamily is discussed on the basis of the difference in size and structure between the KZ and EL genomes.__________Translated from Genetika, Vol. 41, No. 4, 2005, pp. 455–465.Original Russian Text Copyright © 2005 by Krylov, Pleteneva, Lavigne, Hertveldt, Volckaert, Sernova, Georgopoulos, Korchevskii, Kurochkina, Mesyanzhinov.  相似文献   

3.
In mealybugs, chromatin condensation is related to both genomic imprinting and sex determination. The paternal chromosomal complement is condensed and genetically inactive in sons but not in daughters. During a study of chromatin organization in Planococcus lilacinus, digestion with micrococcal nuclease showed that 3% to 5% of the male genome is resistant to the enzyme. This Nuclease Resistant Chromatin (NRC) apparently has a nucleosomal organization. Southern hybridization of genomic DNA suggests that NRC sequences are present in both sexes and occur throughout the genome. Cloned NRC DNA is A+T-rich with stretches of adenines similar to those present in mouse -satellite sequences. NRC DNA also contains sequence motifs that are typically associated with the nuclear matrix. Salt-fractionation experiments showed that NRC sequences are matrix associated. These observations are discussed in relation to the unusual cytological features of mealybug chromosomes, including the possible existence of multiple centres of inactivation.  相似文献   

4.
The review considers the involvement of bacteriophages in transferring genes, which determine bacterial pathogenicity, and the increasing role of comparative genomics and genetics of bacteria and bacteriophages in detecting new cases of horizontal gene transfer. Examples of phage participation in this process proved to a different extent are described. Emphasis is placed on the original work carried out in Russia and focused on bacteriophages (temperate transposable phages and giant virulent KZ-like phages) of conditional pathogen Pseudomonas aeruginosa.Consideration is given to the possible lines of further research of the role of bacteriophages in the infection process and, in particular, the role of virulent phages, whose products are similar to those of pathogenic bacteria, in modification of clinical signs of infectious diseases and in evolution. An attempt is made to predict the possible direction of pathogen evolution associated with development of new treatment strategies and generation of new specific niches.  相似文献   

5.
In recent years interest in bacteriophages in aquatic environments has increased. Electron microscopy studies have revealed high numbers of phage particles (104 to 107 particles per ml) in the marine environment. However, the ecological role of these bacteriophages is still unknown, and the role of the phages in the control of bacterioplankton by lysis and the potential for gene transfer are disputed. Even the basic questions of the genetic relationships of the phages and the diversity of phage-host systems in aquatic environments have not been answered. We investigated the diversity of 22 phage-host systems after 85 phages were collected at one station near a German island, Helgoland, located in the North Sea. The relationships among the phages were determined by electron microscopy, DNA-DNA hybridization, and host range studies. On the basis of morphology, 11 phages were assigned to the virus family Myoviridae, 7 phages were assigned to the family Siphoviridae, and 4 phages were assigned to the family Podoviridae. DNA-DNA hybridization confirmed that there was no DNA homology between phages belonging to different families. We found that the 22 marine bacteriophages belonged to 13 different species. The host bacteria were differentiated by morphological and physiological tests and by 16S ribosomal DNA sequencing. All of the bacteria were gram negative, facultatively anaerobic, motile, and coccoid. The 16S rRNA sequences of the bacteria exhibited high levels of similarity (98 to 99%) with the sequences of organisms belonging to the genus Pseudoalteromonas, which belongs to the γ subdivision of the class Proteobacteria.The marine bacterial community is responsible for a considerable portion of primary production and regeneration of nutrients in the microbial loop and is associated with a great variety of marine bacteriophages (5, 12). These phages are capable of infecting a large portion of the bacterioplankton (32, 34). It is assumed that as part of the marine food web, bacteriophages play important quantitative and qualitative roles in controlling marine bacterial populations (8, 24, 34, 39, 45). The phenotypic diversity and genotypic diversity of the phage populations are related to the interaction between phages and their host organisms, which provides a tool for understanding the interaction itself (13). To estimate the influence of marine bacteriophages on the diversity of bacterioplankton, we investigated phage diversity. The virus species concept proposed by Murphy et al. (37) delineates seven different families of bacteriophages based on morphological criteria and provides criteria for new phage species based on several traits, such as DNA homologies, serological data, protein profiles, and host ranges.In this paper, we describe the diversity and genetic relationships of marine phages based on investigations of 22 representatives from 85 phage-host systems (35, 36) collected between 1988 and 1992 from waters around an island, Helgoland, located in the North Sea. All of the phages were virulent and formed plaques on their host bacteria. We assigned the phages to different virus families, species, and strains based on morphology, DNA homology, and host range. Furthermore, we characterized the phenotypic and genotypic features of the host bacteria.  相似文献   

6.
Summary The microtubule inhibitors, ethyl-N-phenylcarbamate (EPC) and thiabendazole (TB), which disrupt cytoplasmic microtubules and induce giant cells inDictyostelium (Kitanishi et al. 1984), were found to induce the occurrence of multiple microtubule organizing centers (MTOCs) in these giant cells. Probing was done by indirect immunofluorescence using monoclonal anti--tubulin. The nuclear DNA content of the giant cells increased in parallel with an increase in the number of MTOCs, as shown by microspectrophotometory of cells stained with the fluorescent DNA stain DAPI (4,6-diamidino-2-phenylindole).Shortly after the inhibitors were removed, the MTOCs of the giant cell formed multiple mitotic spindles or synchronously reconstituted numerous cytoplasmic MT-networks. These events apparently reflected the cell-cycle dependent activities of the MTOCs at the time the inhibitors were removed. When multiple spindles were formed, numerous cytoplasmic MT-networks became organized subsequent to the breakdown of the spindles. In either case, reconstitution of the cytoplasmic MT-networks was followed by apparently normal cytokinesis resulting in the production of many daughter cells each containing a single MT-MTOC complex. The evidence suggested the possible mechanism of the induction of multiple MTOCs, and implied that the MT-MTOC complex is significant in the cytokinesis ofDictyostelium by determining the cell locomotory unit.  相似文献   

7.
Summary This study provides evidence thatGigaspora margarita replicates its nuclear DNA, even in the absence of a host plant. Three experimental approaches were used: (i) static cytofluorimetry to quantify the DNA content, (ii) pulse treatments with bromodeoxyuridine (BrdU), which is an analogue of thymidine, to reveal nuclei undergoing DNA synthesis, and (iii) ultrastructural observations to study changes in chromatin morphology during the fungal cell cycle. A slight second peak of approximately twice the value of a major peak was found by cytofluorimetry, showing that a small number of nuclei had entered in cycle during in vitro development. Nuclei which had incorporated BrdU were observed after pulses of 24 h; nuclei with condensed chromatin were also apparent at this time. The results demonstrate thatG. margarita has all the metabolic pathways needed to replicate its nuclear DNA even in the absence of the host, suggesting that more complex mechanisms inhibit the extended growth in vitro of arbuscular mycorrhizal fungi.Abbreviations AM-fungi arbuscular mycorrhizal fungi - A.U. arbitrary units - BrdU 5-bromo-2-deoxyuridine - DAPI 4,6-diamidino-2-phenylindole - UV ultraviolet light  相似文献   

8.
9.
DNA-protein binding in interphase chromosomes   总被引:1,自引:1,他引:0       下载免费PDF全文
The metachromatic dye, azure B, was analyzed by microspectrophotometry when bound to DNA fibers and DNA in nuclei with condensed and dispersed chromatin. The interaction of DNA and protein was inferred from the amount of metachromasy (increased β/α-peak) of azure B that resulted after specific removal of various protein fractions. Dye bound to DNA-histone fibers and frog liver nuclei fixed by freeze-methanol substitution shows orthochromatic, blue-green staining under specific staining conditions, while metachromasy (blue or purple color) results from staining DNA fibers without histone or tissue nuclei after protein removal. The dispersed chromatin of hepatocytes was compared to the condensed chromatin of erythrocytes to see whether there were differences in DNA-protein binding in "active" and "inactive" nuclei. Extraction of histones with 0.02 N HCl, acidified alcohol, perchloric acid, and trypsin digestion all resulted in increased dye binding. The amount of metachromasy varied, however; removal of "lysine-rich" histone (extractable with 0.02 N HCl) caused a blue color, and a purplish-red color (µ-peak absorption) resulted from prolonged trypsin digestion. In all cases, the condensed and the dispersed chromatin behaved in the same way, indicating the similarity of protein bound to DNA in condensed and dispersed chromatin. The results appear to indicate that "lysine-rich" histone is bound to adjacent anionic sites of a DNA molecule and that nonhistone protein is located between adjacent DNA molecules in both condensed and dispersed chromatin.  相似文献   

10.
11.
With simultaneous immunofluorescence and fluorescent in situ hybridization, we have determined the organization of native and heterologous DNA sequences relative to the cores of meiotic prophase chromosomes. The normal chromatin organization is demonstrated with probes of mouse sequences: a cosmid probe that identities unique sequences and a 720 kb yeast artificial chromosome (YAC) probe that recognizes a specific region of the chromatin domain. The heterologous DNA consists of a 1.8 Mb insertion of 40 tandem head-to-tail phage LIZ vectors and of 11.4 Mb of bacterial/mouse DNA repeats. The lengthy insert is unusual in that it is not contained in the chromatin domain of chromosome 4 and in that it fails to form direct attachments to the chromosome core. The ends are attached indirectly, probably by means of the flanking mouse sequences. At late stages of meiotic prophase, while the terminal attachments remain the same, the DNA becomes highly compacted. Apparently, higher order condensation and core attachment are independent processes. The condensed inserts relax precociously at metaphase I. In the mouse heterozygous for the insert, the two sister inserts are usually merged, as are all four inserts in the homozygous mouse. Evidently chromatin loops with identical sequences can become associated during meiotic prophase. Mouse sequences within a heterologous DNA insert (repeats of bacterial plasmid pBR322 with a mouse -globin insert) were observed to restore some degree of core attachment.  相似文献   

12.
The organization of the 5S genes in macro- and micronuclei of Tetrahymena pyriformis was studied using restriction endonucleases. After complete digestion of macronuclear DNA with BamH-I or Hpa I, 5S RNA hybridized to a DNA fragment of approximately 280 base pairs (bp). When macronuclear DNA was only partially digested with these enzymes, hybridization with 32P-5S RNA demonstrated an oligomeric series with a spacing of 280 bp. These results indicate that the 5S genes are tandemly repeated in macronuclei and that the repeating unit is 280 bp (or 180,000 daltons). Since 5S RNA is 120 nucleotides, we conclude that the 5S repeat units contain a 120 bp transcribed region and a 160 bp spacer region. When macronuclear DNA was digested with Eco RI, Bgl I, or Eco RI + Bgl I, 5S RNA hybridized to DNA of molecular weight 3–4×106, suggesting that these enzymes do not cleave within a 5S repeat. These 3–4×106 dalton fragments define the maximum size of an average cluster of 5S repeated units. Assuming the size of the 5S repeat to be 0.18×106 daltons, there are about 15–20 5S repeats per average tandem cluster, and since there are 350 5S-genes per haploid genome, there must be approximately 15–20 tandem arrays. Results obtained using micronuclear DNA suggest that organization of the 5S-genes is very similar in macro- and micronuclei. Macronuclear rRNA genes are extracnromosomal palindromic dimers. In contrast, 5S genes in Tetrahymena were found to be integrated within the genomes of both macro- and micronuclei and not linked to the rRNA genes. Moreover, it is unlikely that they are palindromes; rather they appear to be tandemly repeated in head-to-tail linkages. Thus, the organization of the 5S genes in Tetrahymena is similar to that of higher eukaryotes.  相似文献   

13.
Summary The development of bacteriophages SPP1, and 29 has been studied in several B. subtilis mutants defective in host DNA replication, under non permissive conditions.Several gene products, involved in the synthesis of host DNA, are required for 29 replication, while SPP1 seems to require obly the host DNA polymerase III. In addition both phages are unable to grow in a dna A mutant (ribonucleotide reductase). Taking advantage of the fact that SPP1 DNA is actively replicated in several dna mutants at non-permissive temperature, we have studied the structure of the replicative intermediates of this phage in the absence of interfering host DNA synthesis.Fast sedimenting forms of SPP1 DNA can be isolated from phage infected cells and evidence of covalently joined concatemers has been obtained, suggesting the presence of terminally repeated sequences.  相似文献   

14.
Summary Derivatives of bacteriophages fd which transduce kanamycin resistance were selected after growth of the phage in an E. coli strain that carried transposon 5 (Tn5). Different clones of transducing phage and their DNAs were characterized by gel electrophoresis, electron microscopy, and by their ability to multiply in the absence of helper phage. Integration of the intact transposon into the full size phage genome was correlated with an increase in size of the phage particle from 0.95 to 1.7 , and with the appearance in the phage DNA of the stem loop structure characteristic for single-stranded Tn5 DNA. In nondefective phages the site of insertion was mapped by heteroduplex analysis within the intergenic region of the phage genome. Defective transducing phages were characterized as an insertion of Tn5 into a phage gene, and/or as a partial deletion or duplication of phage and transposon DNA. The size of the transducting phage from different defective clones varied from 0.6 to 3.0 and was directly proportional to the DNA content. These results demonstrate that filamentous bacteriophage are highly capable to replicate and package very different amounts of foreign DNA.This work was presented at the EMBO Workshop on single-stranded DNA viruses, October 1976, Harpert, The Netherlands  相似文献   

15.
Dairy propionic acid bacteria, particularly the species Propionibacterium freudenreichii, play a major role in the ripening of Swiss type cheese. Isometric and filamentous bacteriophages infecting P. freudenreichii have previously been isolated from cheese. In order to determine the origin of these bacteriophages, lysogeny of P. freudenreichii was determined by isometric bacteriophage type analysis. The genomic DNA of 76 strains were hybridized with the DNA of nine bacteriophages isolated from Swiss type cheeses, and the DNA of 25 strains exhibited strong hybridization. Three of these strains released bacteriophage particules following UV irradiation (254 nm) or treatment with low concentrations of mitomycin C. A prophage-cured derivative of P. freudenreichii was readily isolated and subsequently relysogenized. Lysogeny was therefore formally demonstrated in P. freudenreichii.  相似文献   

16.
Summary The amino acid sequence, arginine-glycine-aspartic acid (RGD), found in some cell adhesive proteins, is a recognition signal for the receptor protein. It is interesting that we have found the RGD sequence in terminal protein (TP) of bacteriophages 29 and M2 near an amino acid, the serine residue at 232, covalently linked to the terminal nucleotide of their DNAs. At the initiation of proteinprimed DNA replication, TP is essential for the recognition of replication machinery containing DNA polymerase and primer protein (PP; PP becomes TP upon linking the first nucleotide, and hence the primary structure of TP is the same as that of PP). Synthetic peptide RGD specifically inhibited transfection of 29 and M2. The target of the RGD peptide is shown to be TP by marker rescue experiments, suggesting that a receptor for the RGD sequence exists in TP. Furthermore, the peptide inhibited the in vitro protein-priming reaction of DNA replication. We propose that the RGD sequence of PP and a putative receptor on TP is utilized for the molecular recognition initiating DNA replication.  相似文献   

17.
Summary A mutant of E. coli K12 appears to be temperature-sensitive in the process of initiation of DNA replication. After a temperature shift from 33 to 42°C, the amount of residual DNA synthesis (Fig. 1) and the number of residual cell divisions (Figs. 2,4) indicate that rounds of DNA replication in process are completed, but new rounds cannot be initiated. Following the alignment of chromosomal DNA by amino acid starvation at 33° C no residual DNA synthesis at 42°C takes place (Fig. 5). When the temperature is lowered to 33°C after a period of inhibition at 42°C, the following observations are made: 1. DNA replication resumes and proceeds synchroneously, (Figs. 7, 8a), 2. cells start to divide again only after a lag period of about 1 hour 3. a temporary increase in cell volume is correlated with the frequency of initiation of DNA synthesis (Fig. 8a, b). In a lysogenic mutant strain prophage is inducible; with all bacteriophages tested, replication of phage DNA is not inhibited at 42°C.  相似文献   

18.
Tovkach  F. I. 《Microbiology》2002,71(1):65-71
Structural organization of the temperate bacteriophage ZF40 of Erwinia carotovora was studied. Phage ZF40 proved to be a typical member of the Myoviridae family (morphotype A1). Phage particles consist of an isometric head 58.3 nm in diameter and a contractile 86.3-nm-long tail with a complex basal plate and short tail fibers (31.5 nm). Phage tail sheath, a truncated cone in shape, is characterized by specific packaging of structural subunits. The ZF40 phage genome is 45.8 kb in size, as determined by restriction analysis, and contains DNA cohesive ends. The ZF40 phage ofErwinia carotovora is assumed to be a new species of bacteriophages specific for enterobacteria.  相似文献   

19.
The e.p.r.5 spectra of a family of spin-labeled probes non-covalently bound to DNA have been measured as functions of helix orientation, packing density and temperature. The spectra are interpreted in terms of the geometrical relations between the helix axis and the orbital containing the unpaired electron and in terms of the motions of the helix. Torsional and flexural motions can be distinguished.Spectra from well-ordered helices have been obtained using fully hydrated DNA fibers that are in thermodynamic equilibrium with unbound probe in dilute salt solution. The binding equilibria are similar to the equilibria in dilute DNA solution. The spatial relations between the spin label and the helix, inferred from the spectra, correspond closely to the structure expected on the basis of intercalation perpendicular to the helix axis and a sterically hindered amide bond between the spin label and the intercalating moiety of the probe. Viscometric measurements with one probe also indicate intercalation.Linear e.p.r. spectra of solutions, randomly condensed DNA, and fibers show substantial torsional motion but no detectable flexure on the linear e.p.r. time scale (> 300 ns). The correlation time of a propidium-based probe is much longer than that of aminoacridine intercalators. The probes with short correlation times are considered to be too weakly coupled to the adjacent base-pairs to be reliable indicators of DNA dynamics. For the propidium probe the correlation time, 30 nanoseconds, and its temperature dependence are compared with the properties expected according to four models: tight rotational coupling along the entire length of the helix; swivels at fixed intervals; a two-state exchange; and elastic rotational coupling between adjacent nucleotide pairs. In terms of the fourth model, the results suggest that each nucleotide pair undergoes random oscillation with an r.m.s. amplitude of not more than 4 ° to 5 ° at room temperature. That value agrees with estimates made in other ways.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号