首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
R H Cohn  L H Kedes 《Cell》1979,18(3):855-864
The linear arrangement and lengths of the spacers and coding regions in the two nonallelic histone gene variant clusters of L. pictus are remarkably homologous by R loop analysis and are similar in general topography to the histone gene repeat units of other sea urchins examined to date. No interventing sequences were detected. The coding regions of these two histone gene variants share considerable sequence homology; however, there are areas of nonhomology in every spacer region and the lengths of the nonhomologous spacers between the H2A and H1 genes are not the same for the two repeat unit classes (inter-gene heterogeneity). Combining length measurements obtained with both R loops and heteroduplexes suggests that the DNA sequences of the analogous leader regions for the two H1 mRNAs are nonhomologous. Similar observations were made for the H4 leader sequences, as well as the trailer region on H2B. S. purpuratus spacer DNA segments share little sequence homology with L. pictus; however, the analgous coding (and possibly flanking) regions have conserved their sequences. The various coding and spacer regions within a repeat unit do not share DNA sequences. Thus certain areas in the sea urchin histone gene repeat units have been highly conserved during evolution, while other areas have been allowed to undergo considerable sequence change not only between species but within a species.  相似文献   

2.
A cloned histone gene cluster of the highly reiterated type from the sea urchin Psammechinus miliaris was analyzed by DNA sequencing. More than half of the 6 kb repeat was sequenced, including coding regions of all five histones, some prelude and trailing sequences lying adjacent to the structural genes, and segments of the AT-rich spacer DNA. The gene cluster does not code for gonad-specific histone variants but may instead be active in early sea urchin development, as indicated by comparison to reference histones. The encoded histones seem not to be derived from longer precursor proteins, nor is there any evidence for insert sequences within the coding regions. Sequence similarities exist among the putative ribosome-binding sites adjacent to the initiator codons of individual genes. The AT-rich spacer segments between the genes differ from each other, are made up from relatively simple nucleotide arrangements, but are not repetitious, and apparently do not code for additional large proteins.  相似文献   

3.
The genes coding for the H3 and H4 histones of Saccharomyces cerevisiae have been isolated by recombinant DNA cloning. The genes were detected in a bacteriophage lambda library of the yeast genome by hybridization with plasmids containing the cloned Psammechinus miliaris sea urchin histone genes (pCH7) and the cloned Drosophila histone genes (cDM500). Two non-allelic sets of the H3 and H4 genes have been isolated. Each set consists of one H3 gene and one H4 gene arranged as a divergently transcribed pair separated by an intergene spacer DNA. The histone genes were located on the cloned yeast fragments by S1 nuclease mapping, as was a gene (SMT1) of unknown function that does not code for a histone but is closely linked to one of the histone sets. Sequence homology between the two non-allelic sets is confined to the coding regions of the respective genes while the flanking DNA and intergene spacer DNA are extensively divergent. Cellular RNA homologous to the histone genes, including transcribed non-coding sequences unique to each of the four genes, was detected by S1 mapping, thus demonstrating that all four genes are transcribed in vegetative cells.  相似文献   

4.
5.
The relative positions of the sea urchin histone genes and the spacer regions on the chimeric plasmids pSp2 and pSp17 have been mapped by hybridizing total histone messenger RNA to single strands of the plasmid DNAs. The lengths and spacing between the several RNA:DNA duplex regions on the single strands of DNA were measured by the gene 32-ethidium bromide electron microscope mapping method. We find that the genes are interdigitated with spacer sequences of different lengths; that there are three coding sequences on pSp2, all on the same strand, with the relative order H1, H4, and B4; and that there are two coding sequences on pSp17, both on the same strand, corresponding to the messages denoted B1 and B2–B3, where B4, B1, and B2–3 are electrophoretically resolved components of histone mRNA, all of size intermediate between the larger H1 and the smaller H4 message.  相似文献   

6.
We have analyzed the histone genes from the sea urchin Lytechinus pictus. Examination of native DNA from individuals reveals four major Eco RI restriction endonuclease histone gene DNA fragments which have been labeled A (6.0 kb), B (4.1 kb), C (3.1 kb) and D (1.2 kb). The fragments A, B and C have been cloned into E. coli plasmids (pLpA, pLpB and pLpC). These histone gene fragments display length and sequence heterogeneity in different individuals. The plasmid pLpA contains the coding regions for H1, H4, H2B and H3 histones, and we determined that the DNA fragment D is tandem to A in native DNA and that it contains the H2A gene. The plasmids pLpB and pLpC contain the histone genes H2A-H1-H4 and H2B-H3, respectively, and together contain the sequences for the five major histones. Restriction analysis of native L. pictus DNA reveals that B and C are tandem to each other but not intermingled with the A-D-type repeat units, and are thus in separate clusters with a repeat length of 7.2 kb. Since the two cluster types do not segregate, they are not alleles. Hybridization of histone mRNA to exonuclease III-digested linear DNA demonstrated an identical polarity of the histone genes in the A-D- and B-C-type repeat units. This result revealed that the L. pictus histone genes have a polarity which is the same as other sea urchin histone genes examined to date—that is, 3′ H1-H4-H2B-H3-H2A 5′. Restriction endonuclease cleavage patterns of the cloned segments indicate that considerable sequence heterogeneity exists between the two types of histone gene repeat units.  相似文献   

7.
Sea urchin (S. purpuratus) histone DNA of constructed plasmid chimeras cloned in E. coli was cleaved with the restriction endonucleases Eco RI, Hind III, Sal I, Bam I, and Hha I. The resulting fragments were ordered and isolated directly from agarose gels or cloned into other plasmids. Each fragment hybridized to one or another of the five histone mRNAs and elucidated the order of the histone genes in each of the cloned fragments. Some DNA did not hybridize to histone mRNAs and was identified as spacer DNA located between coding regions.Total sea urchin DNA was cleaved with restriction endonucleases, fractionated on agarose gels, and hybridized to histone mRNAs or histone DNA. The results revealed the order of the five histone genes in the histone gene repeat unit and demonstrate that the histone spacer DNAs have little sequence homology to other genes. Exonuclease III digestion of specific linear chimeric histone DNA plasmids followed by hybridization with mRNAs demonstrated the existence of all five histone genes on one strand of DNA and the 5′-3′ polarity of that strand. These results, in conjunction with the data of Wu et al. (1976), allow us to construct a map of coding and spacer sequences in the transcribed strand of the S. purpuratus histone gene repeat unit:
  相似文献   

8.
9.
DNA sequences of cloned histone coding sequences and spacers of sea urchin species that diverged long ago in evolution were compared. The highly repeated H4 and H3 genes active during early embryogenesis had evolved (in their silent sites) at a rate (0.5-0.6% base changes/Myr) similar to single-copy protein-coding genes and nearly as fast as spacer DNA (0.7% base changes/Myr) and unique DNA. Thus, evolution in the major histone genes conforms to a universal evolutionary clock based on the rate of base sequence change. By contrast, the H4 and H3 coding sequences and a non-transcribed spacer of the DNA clone h19 of Psammechinus miliaris show an exceptionally low rate of sequence evolution only 1/100 to 1/200 that predicted from the clock hypothesis. According to the classical model of gene inheritance, the h19 DNA sequences in the Psammechinus genome require unusual conservation mechanisms by selection at the level of the gene and spacer sequences. An alternative explanation could be recent horizontal gene transfer of a histone gene cluster from the very distantly related Strongylocentrotus dröbachiensis to the P. miliaris genome.  相似文献   

10.
11.
12.
T Tabata  K Sasaki    M Iwabuchi 《Nucleic acids research》1983,11(17):5865-5875
Some wheat histone H4 genes have been cloned from a Charon 4 wheat genomic DNA library using sea urchin histone H4 DNA as a probe. DNA sequence analysis of a cloned gene showed that the deduced amino acid sequence of wheat histone H4 protein was identical to that of pea. The 5' end of wheat histone H4 mRNA was mapped on the cloned gene by the S1-procedure. Southern blotting analysis of the genomic DNA indicated that histone H4 genes were reiterated 100 to 125 times per hexaploid wheat genome.  相似文献   

13.
Genomic organization and nucleotide sequences of two corn histone H4 genes   总被引:6,自引:0,他引:6  
The sea urchin histone H4 gene has been used as a probe to clone two corn histone H4 genes from a lambda gtWES X lambda B corn genomic library. The nucleotide (nt) sequences of both genes showed that the encoded amino acid sequences were identical to that of the H4 of pea and one variant of wheat. The nt sequences of the coding regions showed 92% homology. 5'- and 3'-flanking regions do not show extensive nt sequence analogies. Southern blotting of the EcoRI digested genomic DNA suggests the existence of multiple H4 genes dispersed throughout the genome.  相似文献   

14.
The DNA sequence of a chicken genomal fragment containing a histone H2A gene has been determined. It contains extensive 5' and 3' flanking regions and encodes a protein identical in sequence to the histone H2A protein isolated from chicken erythrocytes. In the 5' flanking region, a possible "TATA box" and three possible "cap sites" can be recognised upstream from the initiation codon. To the 5' side of the "TATA box" is found an unusual sequence of 21 A's interrupted by a central G residue. It occupies the same relative position as the P. miliaris H2A gene-specific 5' dyad symmetry sequence and the "CCAAT box" seen in other eukaryotic polymerase II genes but is clearly different from both. A significant feature of the 3' non-coding region is the presence of a 23 base-pair sequence that is nearly identical to a conserved region found in sea urchin histone genes. The coding region is extremely GC rich, with strong selection for these bases in the third position of codons. Not a single coding triplet ends in U. No intervening sequences were found in this gene.  相似文献   

15.
16.
Sequences coding for histone H3 and H4 of Neurospora crassa could be identified in genomic digests with the use of the corresponding genes from sea urchin and X. laevis as hybridization probes. A 2.6 kb HindIII-generated N. crassa DNA fragment, showing homology with the heterologous histone H3-gene probes was cloned in a charon 21A vector. Using DNA from this clone as a homologous hybridization probe a 6.9 kb SalI-generated DNA fragment was isolated which in addition to the histone H3-gene also contains the gene coding for histone H4. Several lines of evidence demonstrate the presence of only a single histone H3- as well as a single histone H4-gene in N. crassa. The two genes are physically linked on the genome. DNA sequencing of the N. crassa histone H3- and H4-genes confirmed their identity and, in addition, revealed the presence of one short intron (67 bp) within the coding sequence of the H3-gene and even two introns (68 and 69 bp) within the H4-gene. The amino acid sequences of the N. crassa histones H3 and H4, as deduced from the DNA sequences, and those of the corresponding yeast histones differ only at a few positions. Much larger sequence differences, however, are observed at the DNA level, reflecting a diverging codon usage in the two lower eukaryotes.  相似文献   

17.
18.
19.
20.
We have determined the nucleotide sequence of sea urchin (Lytechinus pictus) late stage H3 and H4 histone genes contained on the clone pLpH3H4 -21 and of the early stage H3 gene contained on the plasmid pLpA . Comparison of these differentially regulated histone genes with each other and with other L. pictus late and early stage histone H3 and H4 genes previously sequenced confirms that members of each histone gene family (early and late) are more homologous to each other than they are to members of other histone gene families. The spacer regions between two late H3-H4 gene pairs on the clones pLpH3H4 -19 and pLpH3H4 -21 have diverged to the point where they are no longer homologous. However, comparative analysis of the 5' flanking DNA has identified a sequence 5'C-T-C-A-T-G-T-A-T-T3' upstream of both late H4 genes and another, 5'A-G-A-T-T-C-A3', upstream of both H3 genes. Except for a short conserved sequence near the initiation codon, the transcribed 5' leaders of the late mRNAs differ in length and sequence in the two non-allelic late histone gene pairs. This divergence contrasts with the 95 to 96% conservation found between late histone gene coding sequences. The results suggest that there is intergenic exchange in the germline among members of the late histone gene family and that the unit of exchange is the individual gene rather than the heterotypic dimer which includes the common spacer DNA.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号