首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Human embryonic stem cells (hESCs) and human induced pluripotent stem cells (hiPSCs), collectively termed human pluripotent stem cells (hPSCs), are typically derived and maintained in adherent and semi-defined culture conditions. Recently a number of groups, including Chen et al., 2012, have demonstrated that hESCs can now be expanded efficiently and maintain pluripotency over long-term passaging as aggregates in a serum-free defined suspension culture system, permitting the preparation of scalable cGMP derived hPSC cultures for cell banking, high throughput research programs and clinical applications. In this short commentary we describe the utility and potential future uses of suspension culture systems for hPSCs.  相似文献   

2.
A cell expansion technique to amass large numbers of cells from a single specimen for research experiments and clinical trials would greatly benefit the stem cell community. Many current expansion methods are laborious and costly, and those involving complete dissociation may cause several stem and progenitor cell types to undergo differentiation or early senescence. To overcome these problems, we have developed an automated mechanical passaging method referred to as “chopping” that is simple and inexpensive. This technique avoids chemical or enzymatic dissociation into single cells and instead allows for the large-scale expansion of suspended, spheroid cultures that maintain constant cell/cell contact. The chopping method has primarily been used for fetal brain-derived neural progenitor cells or neurospheres, and has recently been published for use with neural stem cells derived from embryonic and induced pluripotent stem cells. The procedure involves seeding neurospheres onto a tissue culture Petri dish and subsequently passing a sharp, sterile blade through the cells effectively automating the tedious process of manually mechanically dissociating each sphere. Suspending cells in culture provides a favorable surface area-to-volume ratio; as over 500,000 cells can be grown within a single neurosphere of less than 0.5 mm in diameter. In one T175 flask, over 50 million cells can grow in suspension cultures compared to only 15 million in adherent cultures. Importantly, the chopping procedure has been used under current good manufacturing practice (cGMP), permitting mass quantity production of clinical-grade cell products.  相似文献   

3.
The propagation of human pluripotent stem cells (hPSCs) in conditioned medium derived from human cells in feeder-free culture conditions has been of interest. Nevertheless, an ideal humanized ex vivo feeder-free propagation method for hPSCs has not been developed; currently, additional exogenous substrates including basic fibroblast growth factor (bFGF), a master hPSC-sustaining factor, is added to all of culture media and synthetic substrata such as Matrigel or laminin are used in all feeder-free cultures. Recently, our group developed a simple and efficient protocol for the propagation of hPSCs using only conditioned media derived from the human placenta on a gelatin-coated dish without additional exogenous supplementation or synthetic substrata specific to hPSCs. This protocol has not been reported previously and might enable researchers to propagate hPSCs efficiently in humanized culture conditions. Additionally, this model obviates hPSC contamination risks by animal products such as viruses or unknown proteins. Furthermore, this system facilitates easy mass production of hPSCs using the gelatin coating, which is simple to handle, dramatically decreases the overall costs of ex vivo hPSC maintenance.  相似文献   

4.
There is a need to store very large numbers of conventional human pluripotent stem cell (hPSC) lines for their off‐the‐shelf usage in stem cell therapy. Therefore, it is valuable to generate “universal” or “hypoimmunogenic” hPSCs with gene‐editing technology by knocking out or in immune‐related genes. A few universal or hypoimmunogenic hPSC lines should be enough to store for their off‐the‐shelf usage. Here, we overview and discuss how to prepare universal or hypoimmunogenic hPSCs and their disadvantages. β2‐Microglobulin‐knockout hPSCs did not harbour human leukocyte antigen (HLA)‐expressing class I cells but rather activated natural killer (NK) cells. To avoid NK cell and macrophage activities, homozygous hPSCs expressing a single allele of an HLA class I molecule, such as HLA‐C, were developed. Major HLA class I molecules were knocked out, and PD‐L1, HLA‐G and CD47 were knocked in hPSCs using CRISPR/Cas9 gene editing. These cells escaped activation of not only T cells but also NK cells and macrophages, generating universal hPSCs.  相似文献   

5.
We quantitatively evaluated two recently-developed novel techniques for hepatocyte cultivation in a dish level; that is, spheroid culture and membrane-supported collagen (CN) gel sandwich culture, in terms of cellular maintenance, albumin secretion and 7-ethoxycoumarin (7EC) metabolism to 7-hydroxycoumarin (7HC) as a marker for cytochrome P450 IA1 activity in the presence and absence of rat liver epithelial cell line (RLEC) during one month of culture, together with conventional coculture with RLEC in CN-coated dishes as a control. RLEC prevented spheroid loss caused by its detachment from the culture dishes often occurring in pure culture. CN-gel sandwich by itself improved remarkably hepatocyte maintenance when compared with CN-gel free systems, thereby resulting in enhancement of overall functional expressions as compared with CN-gel free systems. RLEC in CN-gel sandwhich, however, reduced cellular sustainment probably due to its suppression of hepatocyte growth. Although there were no significant differences in albumin secretion per cell among the five cultures examined, CN-gel sandwich expressed markedly higher 7EC metabolizing activity per cell, where RLEC presence had a preferable influence. Consequently, membrane-supported CN-gel sandwich was the most superior technique for hepatocyte cultivation from the standpont of both cellular maintenance and its functional expressions per cell.  相似文献   

6.
For many applications, cells or tissue must be cultured on an optical surface of high quality. For such applications laboratories often prepare "special dishes," which are made by affixing a glass coverslip beneath a hole in a plastic petri dish bottom. In this report, we offer an improved method, using Parafilm as a dry mount adhesive, for the preparation of special dishes, and show that the resulting dish is non-toxic to neurons in culture. The Parafilm bond is stable at 60 degrees C, permitting electron microscopy resins to be poured directly into the dishes and cured. The glass coverslip can be readily removed from the cured resin mechanically. The techniques we describe offer time-saving and reliable improvements for the use of glass coverslips in cell culture and electron microscopy.  相似文献   

7.
Many tissues, such as the adult human hearts, are unable to adequately regenerate after damage.2,3 Strategies in tissue engineering propose innovations to assist the body in recovery and repair. For example, TE approaches may be able to attenuate heart remodeling after myocardial infarction (MI) and possibly increase total heart function to a near normal pre-MI level.4 As with any functional tissue, successful regeneration of cardiac tissue involves the proper delivery of multiple cell types with environmental cues favoring integration and survival of the implanted cell/tissue graft. Engineered tissues should address multiple parameters including: soluble signals, cell-to-cell interactions, and matrix materials evaluated as delivery vehicles, their effects on cell survival, material strength, and facilitation of cell-to-tissue organization. Studies employing the direct injection of graft cells only ignore these essential elements.2,5,6 A tissue design combining these ingredients has yet to be developed. Here, we present an example of integrated designs using layering of patterned cell sheets with two distinct types of biological-derived materials containing the target organ cell type and endothelial cells for enhancing new vessels formation in the “tissue”. Although these studies focus on the generation of heart-like tissue, this tissue design can be applied to many organs other than heart with minimal design and material changes, and is meant to be an off-the-shelf product for regenerative therapies. The protocol contains five detailed steps. A temperature sensitive Poly(N-isopropylacrylamide) (pNIPAAM) is used to coat tissue culture dishes. Then, tissue specific cells are cultured on the surface of the coated plates/micropattern surfaces to form cell sheets with strong lateral adhesions. Thirdly, a base matrix is created for the tissue by combining porous matrix with neovascular permissive hydrogels and endothelial cells. Finally, the cell sheets are lifted from the pNIPAAM coated dishes and transferred to the base element, making the complete construct.  相似文献   

8.
Here we describe a protocol for generating 3D human intestinal tissues (called organoids) in vitro from human pluripotent stem cells (hPSCs). To generate intestinal organoids, pluripotent stem cells are first differentiated into FOXA2(+)SOX17(+) endoderm by treating the cells with activin A for 3 d. After endoderm induction, the pluripotent stem cells are patterned into CDX2(+) mid- and hindgut tissue using FGF4 and WNT3a. During this patterning step, 3D mid- or hindgut spheroids bud from the monolayer epithelium attached to the tissue culture dish. The 3D spheroids are further cultured in Matrigel along with prointestinal growth factors, and they proliferate and expand over 1-3 months to give rise to intestinal tissue, complete with intestinal mesenchyme and epithelium comprising all of the major intestinal cell types. To date, this is the only method for efficiently directing the differentiation of hPSCs into 3D human intestinal tissue in vitro.  相似文献   

9.
We have tested the effect of dithiothreitol (DTT) treatment on the initial spreading of human fibroblasts in serum-free medium in tissue culture dishes. Cell spreading was inhibited following treatment of these cells with 10 mM DTT. Inhibition occurred when the cells were treated at 37°C but not at 4° and was reversible metabolically but not by the addition of sulfhydryl oxidizing reagents. The inhibition was overcome when DTT-treated human fibroblasts were plated on cold insoluble globulin (plasma fibronectin)—coated dishes. Under these conditions spreading appeared to be completely normal, including the formation of focal adhesions. Analysis of the fibronectin concentrations in the human fibroblasts following DTT treatment indicated that there was little decrease in the absolute level of activity as determined in a biological assay for BHK cell spreading on culture dishes. Analysis of the fibronectin distribution on the DTT-treated human fibroblasts by indirect immunofluorescence using a specific anti-CIG antiserum revealed that fibronectin was no longer deposited onto the culture dish surfaces. Even when the DTT-treated human fibroblasts spread in the presence of fetal calf serum, the cell fibronectin remained for the most part in a perinuclear location. These results indicate that DTT treatment of human fibroblasts prevents the normal translocation of fibronectin from a perinuclear location to the surface of the culture dish. This study further supports our hypothesis that the initial spreading in serum-free medium of fibroblasts from cell strains depends upon secretion of fibronectin onto the culture dish surface.  相似文献   

10.
Thrombospondin (TSP) induced the attachment and spreading of human squamous carcinoma cells on plastic culture dishes and dishes coated with type I or type IV collagen. Increased adhesion was detected as early as 15 min after treatment. Dose-response studies indicated that 1-5 micrograms of TSP per 35 mm (diameter) culture dish was sufficient to induce a response and that a half-maximal response occurred at 10 micrograms of TSP/dish. The squamous carcinoma cells synthesized TSP as indicated by biosynthetic labeling experiments. TSP was secreted (or shed) into the culture medium by these cells and also became bound to the cell surface. TSP also promoted adhesion of human keratinocytes, fibroblasts and fibrosarcoma cells but did not induce attachment or spreading of human melanoma or glioma cells, although these cells did respond to laminin.  相似文献   

11.
Plasma proteins termed "SP1" and "30K proteins" are synthesized by the fat body cells of the silkworm, Bombyx mori, in a sex- and stage-specific manner during larval development. We successfully established a primary culture of the fat body cells in order to investigate the regulatory mechanisms of plasma protein gene expression. The primary cultures of fat body cells contained at least two cell types: small oval cells, and large spherical cells. The cells adhered to and migrated on the cultured dish after plating. By the 7th day of cultivation, the cells clustered to form fat body-like structures, which were maintained for at least 3 months. Plasma proteins were actively synthesized in the primary cultures of the fat body cells isolated from the final instar larvae only when the cells tightly adhered to and clustered on the cultured dish. Immunocytochemical analysis revealed that only 10-15% of the clustered cells synthesized plasma proteins in our culture system, indicating that the primary culture comprises heterogeneous cells that are morphologically and functionally distinct. The patterns of SP1 syntheses in primary cultures faithfully reproduced their sex-dependency in vivo.  相似文献   

12.
The effects of glycosaminoglycans (GAG) on cell-to-substratum adhesion and neurite elongation were examined in primary cultures of fetal rat hippocampal neurons using tissue culture dishes coated with GAGs coupled to dipalmitoylphosphatidylethanolamine (PE), a novel probe for biological functions of GAGs. Both chondroitin sulfate conjugate to PE (CS-PE) and hyaluronic acid conjugate to PE (HA-PE) promoted neurite elongation from neurons in a dose-dependent manner when immobilized onto polylysine-coated dishes at various concentrations up to 1.0 microg/ml. The coating of CS-PE or HA-PE at a concentration higher than 1.0 microg/ml resulted in failure of neurite extension and adhesion of neurons to the substrata. In contrast, heparin conjugate to PE (HP-PE) did not exert any effects on neurite elongation or on cell attachment at these concentrations. These findings suggest that GAGs serve as a modulator for neurite elongation during neuronal network formation in the developing central nervous system.  相似文献   

13.
Chick embryo fibroblasts were plated on Petri dishes that had not been treated for use in tissue culture (bacteriological dishes). On these dishes the cells grow at the same exponential rate as cells plated on tissue culture dishes, but their growth becomes inhibited sooner after plating, and therefore at a lower cell number per dish. The inhibition of cell growth on bacteriological dishes is correlated with the formation of cell clumps. Clump formation is reversible by mechanical transfer of the clumps to a tissue culture dish: the cells migrate out of the clumps, form a monolayer, and cell growth resumes.Clump formation was studied by time-lapse cinematography, and was found to be due to reduced adhesion of the cells to the bacteriological dish surface. This reduced adhesiveness of the substratum is due to a lower number of negatively-charged residues on the bacteriological dish surface, which can be measured by the binding of crystal violet. The number of negatively-charged residues, and therefore the adhesiveness of the substratum can be altered by treatment of the dishes with sulfuric acid. Serum components of the medium were found to affect cell adhesion to the bacteriological dishes, consequently altering the efficiency of cell attachment, the extent of cell growth and the pattern of clump formation.The cells in clumps were compared with those in confluent monolayers on tissue culture dishes. Growth-inhibited cells on both types of dish were found to be equally viable. Cells in clumps on bacteriological dishes were found to be inhibited in the G1 phase of the cell cycle, as are cells in density-inhibited monolayers. Infection by the oncogenic virus, Rous sarcoma virus, can release the cells from growth-inhibition on both types of dish. Cell-induced alterations of the medium are not involved in the growth inhibition of cells on bacteriological dishes.  相似文献   

14.
15.
Human pluripotent (embryonic or induced) stem cells (hPSCs) have many potential applications, not only for research purposes but also for clinical and industrial uses. While culturing these cells as undifferentiated lines, an adherent cell culture based on supportive layers or matrices is most often used. However, the use of hPSCs for industrial or clinical applications requires a scalable, reproducible and controlled process. Here we present a suspension culture system for undifferentiated hPSCs, based on a serum-free medium supplemented with interleukins and basic fibroblast growth factor, suitable for the mass production of these cells. The described system supports a suspension culture of hPSC lines, in both static and dynamic cultures. Results showed that hPSCs cultured with the described dynamic method maintained all hPSC features after 20 passages, including stable karyotype and pluripotency, and increased in cell numbers by 25-fold in 10 d. Thus, the described suspension method is suitable for large-scale culture of undifferentiated hPSCs.  相似文献   

16.
The epithelium of the gastrointestinal tract is constantly renewed as it turns over. This process is triggered by the proliferation of intestinal stem cells (ISCs) and progeny that progressively migrate and differentiate toward the tip of the villi. These processes, essential for gastrointestinal homeostasis, have been extensively studied using multiple approaches. Ex vivo technologies, especially primary cell cultures have proven to be promising for understanding intestinal epithelial functions. A long-term primary culture system for mouse intestinal crypts has been established to generate 3-dimensional epithelial organoids. These epithelial structures contain crypt- and villus-like domains reminiscent of normal gut epithelium. Commonly, termed “enteroids” when derived from small intestine and “colonoids” when derived from colon, they are different from organoids that also contain mesenchyme tissue. Additionally, these enteroids/colonoids continuously produce all cell types found normally within the intestinal epithelium. This in vitro organ-like culture system is rapidly becoming the new gold standard for investigation of intestinal stem cell biology and epithelial cell physiology. This technology has been recently transferred to the study of human gut. The establishment of human derived epithelial enteroids and colonoids from small intestine and colon has been possible through the utilization of specific culture media that allow their growth and maintenance over time. Here, we describe a method to establish a small intestinal and colon crypt-derived system from human whole tissue or biopsies. We emphasize the culture modalities that are essential for the successful growth and maintenance of human enteroids and colonoids.  相似文献   

17.
Summary A new micromethod, called the Stanzen technique, is described for the rapid determination of DNA and protein content as well as the incorporation rates of radioactively labeled precursors into macromolecules in cells growing in replica minicultures on plastic petri dishes. The procedure yielded reproducible results assaying only minimal cell numbers per sample and was applied for studying both primary or early passaged cell cultures (mouse epidermal cells and fibroblasts) and a malignantly transformed epidermal cell line. In four well defined circular areas (called Stanzen) marked on the bottom of tissue-culture plastic petri dishes (by heated stamps), 0.2 to 4×105 cells per area were plated and grown as four individual cultures in one dish. Both treatment and labeling, with radioactive precursors of these Stanzen cultures were performed as with normal petri dishes. After fixation and extraction of the cultures, the singular Stanzen areas (with the cells fixed onto them) were sawed out and transferred into vials for liquid-scintillation counting or determination of DNA and protein. The obtained values of specific activity corresponded well whether the samples compared were derived from the minicultures of the same dish or from several dishes. By modifications of the known colorimetric methods for DNA and protein determination, the sensitivity of these procedures was improved down to values of 1 μg DNA or 5 μg protein per individual culture. These micromodifications yielded the same values as the standard methods whether applied to cell suspensions or to cell cultures. Finally, cell proliferation was not influenced by the growth conditions in the small Stanzen areas and proceeded as in normal dishes or larger areas similarly stamped on the bottom of petri dishes. Since this method proved valuable for biochemical studies using primary cultures of mouse epidermal cells (saving cell material by a factor of 10, test substances and time), it might also be advantageous, for other purposes as well where the availability of cells or test substances are limiting factors for large test series.  相似文献   

18.
In this paper and video, we describe the protocols used in our laboratory to study the targeting preferences of regenerating cell processes of adult retinal neurons in vitro. Procedures for preparing retinal cell cultures start with the dissection, digestion and trituration of the retina, and end with the plating of isolated retinal cells on dishes made especially for use with laser tweezers. These dishes are divided into a cell adhesive half and a cell repellant half. The cell adhesive side is coated with a layer of Sal-1 antibodies, which provide a substrate upon which our cells grow. Other adhesive substrates could be used for other cell types. The cell repellant side is coated with a thin layer of poly-HEMA. The cells plated on the poly-HEMA side of the dish are trapped with the laser tweezers, transported and then placed adjacent to a cell on the Sal-1 side to create a pair. Formation of cell groups of any size should be possible with this technique. "Laser-tweezers-controlled micromanipulation" means that the investigator can choose which cells to move, and the desired distance between the cells can be standardized. Because the laser beam goes through transparent surfaces of the culture dish, cell selection and placement are done in an enclosed, sterile environment. Cells can be monitored by video time-lapse and used with any cell biological technique required. This technique may help investigations of cell-cell interactions.Open in a separate windowClick here to view.(66M, flv)  相似文献   

19.
Summary In this report, we show how the in vitro model of mechanically injured confluent monolayers of cultured mammalian cells, consisting in denudation by gentle scraping of areas in the monolayer, can be extended to obtain patterned cell cultures without using preadded attaching matrices. This work was done with a sinusoidal endothelial liver cell line. Patterns for cell growth were drawn in confluent monolayers by cell detaching with the aid of pipette tips followed by reincubation of the culture. In one or some d, acellular patterns were closed by cell migration and proliferation. For unveiling the pattern formed by migration and cell duplication, an enzymatic digestion with trypsin-collagenase solution was applied; after some min, only the migrating and younger cells filling the previous acellular pattern remained attached to the dish, and the now cellular pattern was clearly depicted. After stopping and recovering from the enzymatic treatment, the culture was ready for starting studies such as those related to migration, proliferation, cell-cell interactions. This method allows us to create simple and complex patterns, does not require preparation of the dishes with attaching matrices, and extracellular matrices in acellular areas are absent because of the enzymatic treatment, thus, potentially having many applications in cell culture techniques.  相似文献   

20.
N E Fusenig  W Thon  W Samsel 《In vitro》1979,15(5):315-325
A new micromethod, called the Stanzen technique, is described for the rapid determination of DNA and protein content as well as the incorporation rates of radioactively labeled precursors into macromolecules in cells growing in replica minicultures on plastic petri dishes. The procedure yielded reproducible results assaying only minimal cell numbers per sample and was applied for studying both primary or early passaged cell cultures (mouse epidermal cells and fibroblasts) and a malignantly transformed epidermal cell line. In four well defined circular areas (called Stanzen) marked on the bottom of tissue-culture plastic petri dishes (by heated stamps), 0.2 to 4 x 10(5) cells per area were plated and grown as four individual cultures in one dish. Both treatment and labeling with radioactive precursors of these Stanzen cultures were performed as with normal petri dishes. After fixation and extraction of the cultures, the singular Stanzen areas (with the cells fixed onto them) were sawed out and transferred into vials for liquid-scintillation counting or determination of DNA and protein. The obtained values of specific activity corresponded well whether the samples compared were derived from the minicultures of the same dish or from several dishes. By modifications of the known colorimetric methods for DNA and protein determination, the sensitivity of these procedures was improved down to values of 1 microgram DNA or 5 micrograms protein per individual culture. These micromodifications yielded the same values as the standard methods whether applied to cell suspensions or to cell cultures. Finally, cell proliferation was not influenced by the growth conditions in the small Stanzen areas and proceeded as in normal dishes or larger areas similarly stamped on the bottom of petri dishes. Since this method proved valuable for biochemical studies using primary cultures of mouse epidermal cells (saving cell material by a factor of 10, test substances and time), it might also be advantageous for other purposes as well where the availability of cells or test substances are limiting factors for large test series.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号