首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到15条相似文献,搜索用时 0 毫秒
1.
Human respiratory syncytial virus (RSV) contains a heavily glycosylated 90-kDa attachment glycoprotein (G). Infection of HEp-2 and Vero cells in culture depends largely on virion G protein binding to cell surface glycosaminoglycans (GAGs). This GAG-dependent phenotype has been described for RSV grown in HEp-2 cells, but we have found that it is greatly reduced by a single passage in Vero cells. Virions produced from Vero cells primarily display a 55-kDa G glycoprotein. This smaller G protein represents a post-Golgi compartment form that is lacking its C terminus, indicating that the C terminus is required for GAG dependency. Vero cell-grown virus infected primary well-differentiated human airway epithelial (HAE) cell cultures 600-fold less efficiently than did HEp-2 cell-grown virus, indicating that the C terminus of the G protein is also required for virus attachment to this model of the in vivo target cells. This reduced infectivity for HAE cell cultures is not likely to be due to the loss of GAG attachment since heparan sulfate, the primary GAG used by RSV for attachment to HEp-2 cells, is not detectable at the apical surface of HAE cell cultures where RSV enters. Growing RSV stocks in Vero cells could dramatically reduce the initial infection of the respiratory tract in animal models or in volunteers receiving attenuated virus vaccines, thereby reducing the efficiency of infection or the efficacy of the vaccine.Human respiratory syncytial virus (RSV) is a negative-sense, single-stranded RNA virus in the family Paramyxoviridae, subfamily Pneumovirinae. RSV causes mild respiratory disease in all age groups, but the disease can be severe or fatal in infants and the elderly (4, 9, 11). Initial attempts to produce a killed vaccine were not successful, resulting instead in enhanced disease upon infection (26, 41). Efforts to produce a live attenuated vaccine are ongoing (6, 7, 51).RSV produces three glycoproteins which are important for infection. The largest glycoprotein (G) is involved in attachment to the host cell (35), the fusion (F) glycoprotein mediates virion membrane fusion with the target cell membrane (2), and the small hydrophobic (SH) glycoprotein may attenuate apoptosis (15). The F protein is the only glycoprotein that is absolutely required for infection of cultured immortalized cells (27, 45) and syncytium formation, the most obvious cytopathic effect of RSV in immortalized cell culture. Although the G protein is not absolutely required for infection, it enhances infection and syncytium formation (45). The G protein attaches to cultured, immortalized cell lines (35) primarily via glycosaminoglycans (GAGs) on the cell surface (13, 22, 23, 30). GAGs are repeating disaccharide units of hexuronic acid and hexosamine that form unbranched polysaccharide chains and are found on the surface of most mammalian cells. The GAG type that appears most important for RSV infection of HEp-2 cells is heparan sulfate (HS) (23, 30).The G protein is a type II integral membrane protein with its N terminus on the cytoplasmic side of the membrane and its C terminus as the extracellular ectodomain (49). An unglycosylated region in the center of the protein contains four cysteines held together by disulfide bonds in a cysteine noose (19, 24, 33), followed, to the C-terminal side, by a predicted heparin-binding domain (HBD) (12, 13). The 32-kDa G protein, while in the endoplasmic reticulum (ER), is modified by the addition of multiple N-linked carbohydrate chains, depending on the strain. These N-linked additions would increase the molecular mass of G to 45 to 60 kDa. Previous reports have found G protein forms of this size in cells and in virions at low levels (5, 20, 21, 50). All of these reports suggest that these smaller forms of the G protein are partially glycosylated processing intermediates.Maturation of the N-linked carbohydrates of the G protein occurs in the Golgi compartment, where a large number of O-linked carbohydrate chains are added, resulting in an 84- to 92-kDa mature protein (14, 32, 35, 49). This size variation of the G protein is probably due, in part, to the difficulty in sizing heavily glycosylated molecules and variations in molecular mass markers.The G protein shares no homology with the glycoproteins of paramyxoviruses outside the Pneumovirinae subfamily. The high serine and threonine content and the high O-linked glycosylation levels are similar to those found in mucins. The amount of O-linked glycosylation is partially dependent on the cell type used to produce the virus (18).In the present study, we examined virus produced in HEp-2 and Vero cells, which are both commonly used to grow RSV in the laboratory, for dependence on GAGs by the ability to infect cells expressing GAG or deficient in GAG expression. We also examined the ability of the viruses to infect primary, well-differentiated human airway epithelial (HAE) cell cultures. In both systems, infectivity was greatly dependent upon the cell line used to grow the virus. Biochemical characterization of purified virus grown in these two cell lines revealed a smaller form of the RSV G protein in virions from Vero cells. Using C terminus-specific antibodies and a six-His tag at the C terminus of the G protein, we determined that the smaller G protein form was lacking its C terminus. These results highlight the importance of the C-terminal portion of the G protein and suggest that the cell line used to produce a virus can alter its infectivity.  相似文献   

2.
3.
PCR扩增呼吸道合胞病毒(respiratory syncytial virus,RSV)M2 蛋白的CD8+T细胞表位F/M2:81-95和RSV-G蛋白的B细胞表位片段G:125~225(简称G1),以一个Linker连接,插入质粒pET-DsbA中构建原核表达重组质粒, 转染E.coli BL21(DE3)后成功表达了融合蛋白DsbA-G1-Linker-F/M2:81-95(简称D-G1LF/M2),Western-blot结果表明该融合蛋白是RSV特异性的,采用Ni+螯合亲和层析法纯化变性的包涵体溶液,经梯度透析法复性,用该蛋白免疫BALB/c小鼠,结果表明被免疫小鼠肺部及血清中产生了高滴度的抗D-G1LF/M2及抗RSV IgG抗体和中和抗体,同时还诱导产生了RSV特异性的CTL应答;IgG的亚型IgG1/IgG2a的比值为2.66;用RSV攻击免疫后的小鼠,病毒滴定法检测肺部RSV滴度,结果表明D-G1LF/M2对小鼠肺部具有保护作用。  相似文献   

4.
In order to investigate if immune responses to the fusion (F) protein of respiratory syncytial virus (RSV) could be influenced by cytokines, recombinant vaccinia viruses (rVV) carrying both the F gene of RSV and the gene for murine interleukin-2 (IL-2), IL-4, or gamma interferon (IFN-γ) were constructed. In vitro characterization of rVV revealed that insertion of the cytokine gene into the VP37 locus of the vaccinia virus genome resulted in 100- to 1,000-fold higher expression than insertion of the same gene into the thymidine kinase (TK) locus. In comparison, only a two- to fivefold difference in the level of expression of the F protein was observed when the gene was inserted into either of these two loci. Mice vaccinated with rVV expressing the F protein and high levels of IL-2 or IFN-γ cleared rVV more rapidly than mice inoculated with a control rVV and developed only low levels of RSV-specific serum antibody. In addition, these recombinants were much less effective at priming RSV-specific memory cytotoxic T lymphocytes (CTL) and IFN-γ production by spleen cells than rVV expressing the F protein alone. In contrast, mice vaccinated with rVV expressing high levels of IL-4 showed signs of delayed rVV clearance. RSV-specific serum antibody responses were biased in favor of immunoglobulin G1 (IgG1) in these mice, as there was a significant reduction in IgG2a antibody responses compared with serum antibody responses in mice vaccinated with rVV expressing the F protein alone. However, vaccination with rVV expressing the F protein together with high levels of IL-4 did not alter the development of RSV-specific memory CTL or IFN-γ production by RSV-restimulated splenocytes.  相似文献   

5.
6.
7.
8.
The function of lentiviral Vif proteins is to neutralize the host antiviral cytidine deaminases APOBEC3G (A3G) and APOBEC3F (A3F). Vif bridges a cullin 5-based E3 ubiquitin ligase with A3G and A3F and mediates their degradation by proteasomes. Recent studies have found that Vif uses different domains to bind to A3G and A3F. A 14DRMR17 domain binds to A3F, 40YRHHY44 binds to A3G, and 69YxxL72 binds to both A3G and A3F. Here, we report another functional domain of Vif. Previously, we demonstrated that human immunodeficiency virus type 1 (HIV-1) Vif failed to mediate A3G proteasomal degradation when all 16 lysines were mutated to arginines. Here, we show that K26, and to a lesser extent K22, is critical for A3G neutralization. K22 and K26 are part of a conserved 21WxSLVK26 (x represents N, K, or H) motif that is found in most primate lentiviruses and that shows species-specific variation. Both K22 and K26 in this motif regulated Vif specificity only for A3G, whereas the SLV residues regulated Vif specificity for both A3F and A3G. Interestingly, SLV and K26 in HIV-1 Vif did not directly mediate Vif interaction with either A3G or A3F. Previously, other groups have reported an important role for W21 in A3F and A3G neutralization. Thus, 21WxSLVK26 is a novel functional domain that regulates Vif activity toward both A3F and A3G and is a potential drug target to inhibit Vif activity and block HIV-1 replication.The replication of human immunodeficiency virus type 1 (HIV-1) is seriously impaired in human primary lymphocytes when the viral protein Vif is not present (8, 38). The first cellular target of Vif was identified as APOBEC3G (A3G) (34), which belongs to the cytidine deaminase family known as APOBEC (apolipoprotein B mRNA-editing catalytic polypeptide) (14). This family consists of APOBEC1; activation-induced deaminase (AID); APOBEC2; a subgroup of APOBEC3 (A3) proteins, including A3A, A3B, A3C, A3DE, A3F, A3G, and A3H; and APOBEC4 in humans (12). They have one or two copies of a cytidine deaminase domain with a signature motif (HxEx23-28PCx2-4C), and normally only one of the cytidine deaminase domains has deaminase activity.All seven A3 genes have been shown to inhibit the replication of various types of retroviruses via cytidine deamination-dependent or -independent mechanisms (3). In particular, A3B, A3DE, A3F, and A3G inhibit HIV-1 replication, whereas A3A and A3C do not (1, 6, 7, 19, 34, 42, 50). Recently, it was shown that optimizing A3H expression in cell culture also inhibits HIV-1 replication (4, 10, 25, 39). Among these proteins, A3G and A3F have the most potent anti-HIV-1 activities. A3G and A3F share ∼50% sequence similarity but have different biochemical properties (41) and different target sequence preferences while catalyzing cytidine deamination of viral cDNAs (19).Nevertheless, HIV-1 is able to elude this defense mechanism and cause human disease for two reasons. First, A3B and A3H are expressed only at low levels in vivo (4, 7, 18, 26). Second, HIV-1 produces Vif, which is expressed in all lentiviruses except equine infectious anemia virus. Vif can destabilize A3DE, A3F, and A3G proteins by targeting them to the proteasomal degradation pathway (6, 22, 35, 37, 50). In addition, Vif may also inhibit A3 activity independently of proteasomal degradation (15, 16, 31).The action of Vif is highly species specific. Vif from HIV-1 inactivates only A3G from humans, and Vif from simian immunodeficiency virus (SIV) isolated from African green monkeys (AGM) does not inactivate A3G from humans. Nevertheless, Vif from SIV isolated from rhesus macaques (MAC) inactivates A3G from all humans, AGM, and MAC (21). A single residue in A3G at position 128, an aspartic acid in humans versus a lysine in AGM, determines A3G sensitivity to HIV-1 Vif (2, 32, 44). In addition, an N-terminal domain in HIV-1 Vif, 14DRMR17, determines Vif specificity for different A3G proteins (33).Vif targets A3G to the proteasome by acting as an adaptor protein that bridges A3G with a cullin 5 (Cul5)-based E3 ubiquitin ligase complex, which includes Cul5, elongin B (EloB), and EloC (46). Vif has a BC box motif (144S145L146Q) that binds to EloC (23, 47) and an HCCH motif (114C/133C) that binds to Cul5 (20, 24, 43). It has also been shown that Vif specifically binds to a region from amino acids 126 to 132 of A3G and to amino acids 283 to 300 of A3F (13, 30). It is believed that as a consequence of these interactions, A3G is polyubiquitylated and directed to 26S proteasomes for degradation.Several domains that determine Vif interactions with A3F and A3G have been identified. Analysis of HIV-1 patient-derived Vif sequences initially found that W11 is essential for A3F recognition and K22, Y40, and E45 are required for A3G recognition (36). The previously identified agmA3G-specific 14DRMR17 domain was also found to determine Vif specificity for A3F (33) by direct binding (29). An A3G-specific binding domain, 40YRHHY44, has also been identified (29), and a 69YxxL72 domain interacts with both A3G and A3F (11, 28, 45).We have previously shown that Vif can mediate A3G proteasomal degradation in the absence of A3G polyubiquitylation and that, unexpectedly, this process is dependent on lysines in Vif (5). Here, we identify two N-terminal lysines that are important for Vif function. We show that these lysines are part of a 21WxSLVK26 motif that is conserved in Vif from primate lentiviruses and that this motif regulates Vif activities against both A3G and A3F via different mechanisms.  相似文献   

9.
10.
11.
Most poxviruses express multiple proteins containing ankyrin (ANK) repeats accounting for a large superfamily of related but unique determinants of poxviral tropism. Recently, select members of this novel family of poxvirus proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection. The rabbit-specific poxvirus, myxoma virus (MYXV), encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which include a carboxy-terminal PRANC domain which closely resembles a cellular protein motif called the F-box domain. Here, we show that each MYXV-encoded ANK repeat protein, including M-T5, interacts directly with the Skp1 component of the host SCF ubiquitin ligase complex, and that the binding of M-T5 to cullin 1 is indirect via binding to Skp1 in the host SCF complex. To understand the significance of these virus-host protein interactions, the various binding domains of M-T5 were mapped. The N-terminal ANK repeats I and II were identified as being important for interaction with Akt, whereas the C-terminal PRANC/F-box-like domain was essential for binding to Skp1. We also report that M-T5 can bind Akt and the host SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we report that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during infection with the wild-type MYXV, but not the M-T5 knockout version of the virus. These results indicate that ANK/PRANC proteins play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for virus replication.Myxoma virus (MYXV) is a rabbit-specific poxvirus that has proven to be a useful model system to study the mechanism by which virus-encoded immunoregulatory proteins function to manipulate the various host immune responses during the course of viral infection (50). In its long-term evolutionary host (Sylvilagus sp.), MYXV causes a benign disease localized to the site of inoculation, but when the virus infects European rabbits (Oryctolagus cuniculus), it causes a rapid systemic and highly lethal infection called myxomatosis (13). The success of MYXV as a pathogen can be attributed to the ability of the virus to effectively avoid recognition and clearance by the immune systems of susceptible rabbit hosts. At the level of individual virus-infected cells, poxviruses, like MYXV, are particularly adept at binding and entering most mammalian cells, where they attempt to establish a favorable intracellular environment, which promotes viral replication. Thus, the ability of poxviruses to reconfigure or disable the various host antiviral responses of the infected cell directly dictates the outcome of a viral infection at the cellular level (28). To this end, poxviruses possess a large genomic capacity, and all encode a unique repertoire of immunoregulatory and host-interactive proteins that have evolved to specifically mediate a broad range of cellular processes critical for successful viral replication. To date, a large collection of poxvirus-encoded immunoregulatory proteins have been identified and characterized, including virokines, viroreceptors, signaling modulators, and inhibitors of various antiviral responses, such as apoptotic pathways and interferon signaling (43). More recently, a novel category of poxvirus ankyrin (ANK) repeat proteins have drawn considerable attention for their potential roles in modulating intracellular signaling networks during viral infection (48, 49, 53).With the exception of poxviruses, the ANK motif is not commonly reported in viruses, although numerous examples have been identified in eukaryotic, bacterial, and archaeal proteins (6). The ANK motif, a tandemly repeated consensus module of approximately 33 amino acid residues, has been demonstrated to mediate diverse protein-protein interactions between cellular proteins having a broad spectrum of functional roles (32, 42). Solved crystal structures have revealed a conserved fold structure of the ANK repeat unit, by which each repeat forms a characteristic helix-loop-helix structure with a beta-hairpin/loop region projecting out from the helices at a 90° angle (3, 16, 19, 26). However, the ANK fold appears to be defined by its structure rather than any conserved biological function since there is no specific conserved substrate or binding partner structure that is universally recognized by members of the superfamily.The majority of poxviral ANK repeat-containing proteins also include a conserved carboxy-terminal PRANC (pox protein repeats of ankyrin C terminus) motif, which closely resembles a cellular protein motif called the F-box domain (30). Characterized as substrate adaptors, F-box-containing host proteins function to recruit cellular substrate proteins to the SCF ubiquitin-ligase complex (named after their main components, Skp1, cullin 1 [CUL1], and an F-box protein), where the substrates selected by the complex are ubiquitinated and targeted for degradation by the proteasome (21, 45, 60). The process of selective ubiquitination is an essential regulatory step for many cellular processes, and the human genome encodes more than 70 different F-box proteins, which collectively are thought to specifically target a broad collection of cellular substrates for delivery to the SCF complex to initiate turnover (62).Accounting for the largest family of poxviral proteins, almost all chordopoxviruses encode multiple ANK repeat-containing proteins, some of which have been defined as viral host range or virulence factors (30). For example, canarypox virus encodes 51 ANK repeat proteins, accounting for greater than 20% of the genome; however, most other poxviruses express less than a half dozen ANK repeat proteins (52). MYXV encodes four unique ANK repeat proteins, termed M-T5, M148, M149, and M150, all of which have been described as virulence factors for myxomatosis in rabbits (5, 8, 33). The MYXV host range factor M-T5 was first characterized for its ability to regulate viral tropism within rabbit lymphocytes and, later, some classes of human cancer cell lines (33, 51). In human cancer cells, the direct physical interaction between M-T5 and the host cell Akt was shown to be a key restriction determinant for MYXV tropism in a subset referred to as type II cancer cells (56). Furthermore, M-T5 was shown to be functionally interchangeable with a host ANK repeat protein called PIKE-A, and the activation of Akt by either the viral M-T5 or the host PIKE-A protein was critical for MYXV permissiveness in type II human cancer cells (57). M-T5 was also demonstrated to protect MYXV-infected cells from virus-induced cell cycle arrest, a property which was linked to its ability to interact with a member of the host cell SCF complex called CUL1 (20). Unlike M-T5, no specific host binding partners or target substrates have yet been identified for M148, M149, or M150. However, in tumor necrosis factor alpha (TNF-α)-stimulated cells, M150 was shown to colocalize in the nucleus with NF-κB p65, suggesting that this MYXV protein may modulate the NF-κB pathway (8).In this study, we demonstrate that M-T5, M148, M149, and M150 all have functional carboxy-terminal PRANC/F-box-like domains and that each one can interact directly with the Skp1 component of the host SCF complex. We further examined the various binding domains of M-T5 and identified ANK repeats I and II as being important for interaction with Akt, whereas the PRANC/F-box-like domain was essential for binding to Skp1. We also show that the previously reported interaction of M-T5 with CUL1 was in fact, indirect linking of M-T5 to the host SCF complex via Skp1. More specifically, we investigated the ability of M-T5 to function as a molecular scaffold to link disparate cellular binding partners together within a single complex and report that the viral protein binds Akt and the SCF complex (via Skp1) simultaneously in MYXV-infected cells. Finally, we demonstrate that M-T5 specifically mediates the relocalization of Akt from the nucleus to the cytoplasm during MYXV infection. These results suggest that ANK/PRANC proteins, such as M-T5, play a critical role in reprogramming disparate cellular signaling cascades to establish a new cellular environment more favorable for viral replication.  相似文献   

12.
13.
The spike (S) protein of the coronavirus (CoV) infectious bronchitis virus (IBV) is cleaved into S1 and S2 subunits at the furin consensus motif RRFRR537/S in virus-infected cells. In this study, we observe that the S2 subunit of the IBV Beaudette strain is additionally cleaved at the second furin site (RRRR690/S) in cells expressing S constructs and in virus-infected cells. Detailed time course experiments showed that a peptide furin inhibitor, decanoyl-Arg-Val-Lys-Arg-chloromethylketone, blocked both viral entry and syncytium formation. Site-directed mutagenesis studies revealed that the S1/S2 cleavage by furin was not necessary for, but could promote, syncytium formation by and infectivity of IBV in Vero cells. In contrast, the second site is involved in the furin dependence of viral entry and syncytium formation. Mutations of the second site from furin-cleavable RRRR/S to non-furin-cleavable PRRRS and AAARS, respectively, abrogated the furin dependence of IBV entry. Instead, a yet-to-be-identified serine protease(s) was involved, as revealed by protease inhibitor studies. Furthermore, sequence analysis of CoV S proteins by multiple alignments showed conservation of an XXXR/S motif, cleavable by either furin or other trypsin-like proteases, at a position equivalent to the second IBV furin site. Taken together, these results suggest that proteolysis at a novel XXXR/S motif in the S2 subunit might be a common mechanism for the entry of CoV into cells.The surface glycoproteins of numerous pathogenic enveloped viruses are proteolytically matured during infection in the host or cultured cell lines and are essential for the initiation of infection (33). In many cases, this processing is carried out by cellular proprotein convertases (PCs), most commonly furin (reviewed in reference 46). Furin is a calcium-dependent serine protease that circulates between the trans-Golgi network, plasma membrane, and early endosome by association with exocytic and endocytic pathways (9, 39). This membrane-bound enzyme undergoes further processing and is secreted from cells in an active soluble form (49). Furin processes a wide variety of precursor proteins after the C-terminal arginine (R) residue in the preferred consensus motif RXR(K)R/X (K is lysine, X is any amino acid, and the slash [/] indicates the cleavage position) for viral fusion proteins (2, 32, 33). So far, seven PCs have been identified in mammalian cells, and they display similar, but not identical, specificities for basic motifs at the cleavage site of a substrate. Accumulated studies indicate that secretory PCs, such as furin, PC5, and PC7, are major candidates for processing surface glycoproteins of pathogenic viruses, such as human immunodeficiency virus types 1 and 2, avian influenza virus H5N1, Ebola virus, and respiratory syncytial virus (RSV) (2, 27).Coronavirus (CoV) spike (S) protein, a class I viral fusion protein (7), is responsible for viral attachment to and entry into target cells and for cell-to-cell spread during infection. Typical class I fusion proteins usually require processing at a position immediately upstream of the fusion peptide in order to expose the membrane-anchored subunit. However, in infectious bronchitis virus (IBV) and murine hepatitis virus (MHV), processing of the S protein by furin occurs at a position more than 200 amino acids away from the predicted fusion peptides (6). Furthermore, there is a tradeoff between the furin cleavability of S protein and heparin sulfate (HS) binding in certain CoV strains adapted to cultured cell lines (15, 17). Consequently, CoV S proteins may be proteolytically activated by other proteases to initiate virus-cell fusion. Recently, proteolytic activation by an endosomal protease, cathepsin L, and a membrane-bound protease, factor Xa, was reported to play a role in the entry of severe acute respiratory syndrome (SARS)-CoV (18, 45). Cathepsin is also implicated in the proteolytic activation of many CoV S proteins, including human CoV 229E, feline infectious peritonitis virus (FIPV) 1146, feline enteric CoV (FECV) 1683, and MHV strain 2 (MHV-2), but not for MHV A59 and human CoV NL63 (31, 41, 43, 45).The association of cell surface sialic acid and a low-pH environment were reported to be required for IBV entry (14, 51, 52). However, the factors that determine the infectivity of IBV for cultured cells have yet to be identified. Clinical and field isolates of IBV can be propagated only in embryonated chicken eggs or, transiently, in primary chicken embryo kidney cells. In contrast, IBV of Beaudette strain origin can be readily adapted to cultured cells, such as Vero and BHK-21, by serial passages (1, 22, 40), and hence, it is often used as an in vitro infection model of IBV. Studies with a recombinant infectious clone system demonstrated that IBV S protein is indeed the determinant of extended cell tropism (12). IBV S protein is usually cleaved into S1 and S2 subunits at the furin consensus motif, RRFRR537/S (the position includes the signal peptide) in virus-infected cells (13). Interestingly, Beaudette and related strains carry a mutation at position 687 of the S protein from proline (P) to R, creating a novel furin site (RRRR690/S or RRKR690/S). The acquisition of an additional furin site in the fusion protein may increase cell-to-cell spread by further activation of the protein (23) or extend the host range by utilization of cell surface HS as an entry receptor (17). In this study, furin-mediated cleavage of the IBV S protein at two furin sites was observed in IBV-infected cells. Mutational analysis of the two furin sites revealed that the second site is implicated in the furin dependence of IBV entry and syncytium formation. In contrast, cleavage at the S1/S2 site by furin was not necessary for, but could promote, syncytium formation and the infectivity of IBV in Vero cells.  相似文献   

14.
15.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号