首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.

Background

Previous methods for Kupffer cells (KCs) isolation require sophisticated skills and tedious procedures. Few studies have attempted to explore the self-renewal capacity of KCs in vitro. Therefore, the aim of this study was to establish a simple method for rat KCs isolation and further investigate the mitotic potential of KCs in vitro.

Methods

KCs were obtained by performing one-step perfusion, enzymatic tissue treatment, differential centrifugation and selective adherence. The proliferation ability of cultured KCs was determined by MTT assay and Propidium Iodide FACS analysis. Phagocytic assay and ED-1, ED-2 immunofluorescence were used to identify cell phenotype. After stimulation with LPS, the expression of surface antigens (MHCII, CD40, CD80, and CD86) and the production of cytokines (NF-κB, TNF-α, IL-6 and IL-10) were measured for cell function identification.

Results

KCs were isolated with certain numbers and reasonable purities. The KCs were able to survive until at least passage 5 (P5), and at P3 showed equally strong phagocytic activity as primary KCs (P0). After stimulation with LPS, the change in the expression of surface antigens and the production of cytokines for P3 cells was similar to that for P0 cells.

Conclusions

Our study provides a simple and efficient method for KCs isolation, and reveals that self-renewing KCs have the same phagocytic activity and functions as primary KCs.  相似文献   

2.
3.

Backgrounds and Objective

Spinal cord injury remains to be a challenge to clinicians and it is attractive to employ autologous adult stem cell transplantation in its treatment, however, how to harvest cells with therapeutic potential easily and how to get enough number of cells for transplantation are challenging issues. In the present study, we aimed to isolate skin-derived precursors (SKPs) and dermal multipotent stem cells (dMSCs) simultaneously from single human skin samples from patients with paraplegia.

Methods

Dissociated cells were initially generated from the dermal layer of skin samples from patients with paraplegia and cultured in SKPs proliferation medium. Four hours later, many cells adhered to the base of the flask. The suspended cells were then transferred to another flask for further culture as SKPs, while the adherent cells were cultured in dMSCs proliferation medium. Twenty-four hours later, the adherent cells were harvested and single-cell colonies were generated using serial dilution method. [3H]thymidine incorporation assay, microchemotaxis Transwell chambers assay, RT-PCR and fluorescent immunocytochemistry were employed to examine the characterizations of the isolated cells.

Results

SKPs and dMSCs were isolated simultaneously from a single skin sample. SKPs and dMSCs differed in several respects, including in terms of intermediate protein expression, proliferation capacities, and differentiation tendencies towards mesodermal and neural progenies. However, both SKPs and dMSCs showed high rates of differentiation into neurons and Schwann cells under appropriate inducing conditions. dMSCs isolated by this method showed no overt differences from dMSCs isolated by routine methods.

Conclusions

Two kinds of stem cells, namely SKPs and dMSCs, can be isolated simultaneously from individual human skin sample from paraplegia patients. Both of them show ability to differentiate into neural cells under proper inducing conditions, indicating their potential for the treatment of spinal cord injury patients by autologous cell transplantation.  相似文献   

4.

Background

Platelet-rich plasma (PRP) is increasingly used as a cell culture supplement, in order to reduce the contact of human cells with animal-derived products during in vitro expansion. The effect of supplementation changes on cell growth and protein production is not fully characterized.

Methods

Human mesenchymal stromal cells from bone marrow, adipose tissue and Wharton''s Jelly were isolated and cultured in PRP-supplemented media. Proliferation, in vitro differentiation, expression of cell surface markers, mRNA expression of key genes and protein secretion were quantified.

Results

10% PRP sustained five to tenfold increased cell proliferation as compared to 10% fetal bovine serum. Regarding cell differentiation, PRP reduced adipogenic differentiation and increased calcium deposits in bone marrow and adipose tissue-mesenchymal stromal cells. Wharton''s Jelly derived mesenchymal stromal cells secreted higher concentrations of chemokines and growth factors than other mesenchymal stromal cells when cultured in PRP-supplemented media. Bone marrow derived mesenchymal stromal cells secreted higher concentrations of pro-inflammatory and pro-angiogenic proteins. Mesenchymal stromal cells isolated from adipose tissue secreted higher amounts of extracellular matrix components.

Conclusions

Mesenchymal stromal cells purified from different tissues have distinct properties regarding differentiation, angiogenic, inflammatory and matrix remodeling potential when cultured in PRP supplemented media. These abilities should be further characterized in order to choose the best protocols for their therapeutic use.  相似文献   

5.

Background

The objective of this study was to establish a culture system and elucidate the unique characteristics of a bovine mammary epithelial cell line in vitro.

Methodology

Mammary tissue from a three year old lactating dairy cow (ca. 100 d relative to parturition) was used as a source of the epithelial cell line, which was cultured in collagen-coated tissue culture dishes. Fibroblasts and epithelial cells successively grew and extended from the culturing mammary tissue at the third day. Pure epithelial cells were obtained by passages culture.

Principal Findings

The strong positive immunostaining to cytokeratin 18 suggested that the resulting cell line exhibited the specific character of epithelial cells. Epithelial cells cultured in the presence of 10% FBS, supraphysiologic concentrations of insulin, and hydrocortisone maintained a normal diploid chromosome modal number of 2n = 60. Furthermore, they were capable of synthesizing β-casein (CSN2), acetyl-CoA carboxylase-α (ACACA) and butyrophilin (BTN1A1). An important finding was that frozen preservation in a mixture of 90% FBS and 10% DMSO did not influence the growth characteristics, chromosome number, or protein secretion of the isolated epithelial cell line.

Conclusions

The obtained mammary epithelial cell line had normal morphology, growth characteristics, cytogenetic and secretory characteristics, thus, it might represent an useful tool for studying the function of Chinese Holstein dairy cows mammary epithelial cell (CMECs).  相似文献   

6.

Background

A condition vital for the consolidation and maintenance of sleep is generally reduced responsiveness to external stimuli. Despite this, the sleeper maintains a level of stimulus processing that allows to respond to potentially dangerous environmental signals. The mechanisms that subserve these contradictory functions are only incompletely understood.

Methodology/Principal Findings

Using combined EEG/fMRI we investigated the neural substrate of sleep protection by applying an acoustic oddball paradigm during light NREM sleep. Further, we studied the role of evoked K-complexes (KCs), an electroencephalographic hallmark of NREM sleep with a still unknown role for sleep protection. Our main results were: (1) Other than in wakefulness, rare tones did not induce a blood oxygenation level dependent (BOLD) signal increase in the auditory pathway but a strong negative BOLD response in motor areas and the amygdala. (2) Stratification of rare tones by the presence of evoked KCs detected activation of the auditory cortex, hippocampus, superior and middle frontal gyri and posterior cingulate only for rare tones followed by a KC. (3) The typical high frontocentral EEG deflections of KCs were not paralleled by a BOLD equivalent.

Conclusions/Significance

We observed that rare tones lead to transient disengagement of motor and amygdala responses during light NREM sleep. We interpret this as a sleep protective mechanism to delimit motor responses and to reduce the sensitivity of the amygdala towards further incoming stimuli. Evoked KCs are suggested to originate from a brain state with relatively increased stimulus processing, revealing an activity pattern resembling novelty processing as previously reported during wakefulness. The KC itself is not reflected by increased metabolic demand in BOLD based imaging, arguing that evoked KCs result from increased neural synchronicity without altered metabolic demand.  相似文献   

7.
8.

Background

The objective of this study was to establish the buffalo mammary epithelial cell line (BuMEC) and characterize its mammary specific functions.

Methodology

Buffalo mammary tissue collected from the slaughter house was processed enzymatically to obtain a heterogenous population of cells containing both epithelial and fibroblasts cells. Epithelial cells were purified by selective trypsinization and were grown in a plastic substratum. The purified mammary epithelial cells (MECs) after several passages were characterized for mammary specific functions by immunocytochemistry, RT-PCR and western blot.

Principal Findings

The established buffalo mammary epithelial cell line (BuMEC) exhibited epithelial cell characteristics by immunostaining positively with cytokeratin 18 and negatively with vimentin. The BuMEC maintained the characteristics of its functional differentiation by expression of β-casein, κ-casein, butyrophilin and lactoferrin. BuMEC had normal growth properties and maintained diploid chromosome number (2n = 50) before and after cryopreservation. A spontaneously immortalized buffalo mammary epithelial cell line was established after 20 passages and was continuously subcultured for more than 60 passages without senescence.

Conclusions

We have established a buffalo mammary epithelial cell line that can be used as a model system for studying mammary gland functions.  相似文献   

9.

Background

The excess and persistent accumulation of fibroblasts due to aberrant tissue repair results in fibrotic diseases such as idiopathic pulmonary fibrosis. Recent reports have revealed significant changes in microRNAs during idiopathic pulmonary fibrosis and evidence in support of a role for microRNAs in myofibroblast differentiation and the epithelial-mesenchymal transition in the context of fibrosis. It has been reported that microRNA-21 is up-regulated in myofibroblasts during fibrosis and promotes transforming growth factor-beta signaling by inhibiting Smad7. However, expression changes in microRNA-21 and the role of microRNA-21 in epithelial-mesenchymal transition during lung fibrosis have not yet been defined.

Methods

Lungs from saline- or bleomycin-treated C57BL/6 J mice and lung specimens from patients with idiopathic pulmonary fibrosis were analyzed. Enzymatic digestions were performed to isolate single lung cells. Lung epithelial cells were isolated by flow cytometric cell sorting. The expression of microRNA-21 was analyzed using both quantitative PCR and in situ hybridization. To induce epithelial-mesenchymal transition in culture, isolated mouse lung alveolar type II cells were cultured on fibronectin-coated chamber slides in the presence of transforming growth factor-β, thus generating conditions that enhance epithelial-mesenchymal transition. To investigate the role of microRNA-21 in epithelial-mesenchymal transition, we transfected cells with a microRNA-21 inhibitor. Total RNA was isolated from the freshly isolated and cultured cells. MicroRNA-21, as well as mRNAs of genes that are markers of alveolar epithelial or mesenchymal cell differentiation, were quantified using quantitative PCR.

Results

The lung epithelial cells isolated from the bleomycin-induced lung fibrosis model system had decreased expression of epithelial marker genes, whereas the expression of mesenchymal marker genes was increased. MicroRNA-21 was significantly upregulated in isolated lung epithelial cells during bleomycin-induced lung fibrosis and human idiopathic pulmonary fibrosis. MicroRNA-21 was also upregulated in the cultured alveolar epithelial cells under the conditions that enhance epithelial-mesenchymal transition. Exogenous administration of a microRNA-21 inhibitor prevented the increased expression of vimentin and alpha-smooth muscle actin in cultured primary mouse alveolar type II cells under culture conditions that induce epithelial-mesenchymal transition.

Conclusions

Our experiments demonstrate that microRNA-21 is increased in lung epithelial cells during lung fibrosis and that it promotes epithelial-mesenchymal transition.  相似文献   

10.

Aim

In this work we present a methodology to produce an “imprint” of cells cultivated on a polycarbonate detector by exposure of the detector to UV C radiation.

Background

The distribution and concentration of 10B atoms in tissue samples coming from BNCT (Boron Neutron Capture Therapy) protocols can be determined through the quantification and analysis of the tracks forming its autoradiography image on a nuclear track detector. The location of boron atoms in the cell structure could be known more accurately by the simultaneous observation of the nuclear tracks and the sample image on the detector.

Materials and Methods

A UV C irradiator was constructed. The irradiance was measured along the lamp direction and at different distances. Melanoma cells were cultured on polycarbonate foils, incubated with borophenylalanine, irradiated with thermal neutrons and exposed to UV C radiation. The samples were chemically attacked with a KOH solution.

Results

A uniform irradiation field was established to expose the detector foils to UV C light. Cells could be seeded on the polycarbonate surface. Both imprints from cells and nuclear tracks were obtained after chemical etching.

Conclusions

It is possible to yield cellular imprints in polycarbonate. The nuclear tracks were mostly present inside the cells, indicating a preferential boron uptake.  相似文献   

11.

Background

As the multipotent progenitor population of the airway epithelium, human airway basal cells (BC) replenish the specialized differentiated cell populations of the mucociliated airway epithelium during physiological turnover and repair. Cultured primary BC divide a limited number of times before entering a state of replicative senescence, preventing the establishment of long-term replicating cultures of airway BC that maintain their original phenotype.

Methods

To generate an immortalized human airway BC cell line, primary human airway BC obtained by brushing the airway epithelium of healthy nonsmokers were infected with a retrovirus expressing human telomerase (hTERT). The resulting immortalized cell line was then characterized under non-differentiating and differentiating air-liquid interface (ALI) culture conditions using ELISA, TaqMan quantitative PCR, Western analysis, and immunofluorescent and immunohistochemical staining analysis for cell type specific markers. In addition, the ability of the cell line to respond to environmental stimuli under differentiating ALI culture was assessed.

Results

We successfully generated an immortalized human airway BC cell line termed BCi-NS1 via expression of hTERT. A single cell derived clone from the parental BCi-NS1 cells, BCi-NS1.1, retains characteristics of the original primary cells for over 40 passages and demonstrates a multipotent differentiation capacity into secretory (MUC5AC, MUC5B), goblet (TFF3), Clara (CC10) and ciliated (DNAI1, FOXJ1) cells on ALI culture. The cells can respond to external stimuli such as IL-13, resulting in alteration of the normal differentiation process.

Conclusion

Development of immortalized human airway BC that retain multipotent differentiation capacity over long-term culture should be useful in understanding the biology of BC, the response of BC to environmental stress, and as a target for assessment of pharmacologic agents.  相似文献   

12.

Background

Children with complex urogenital anomalies often require bladder reconstruction. Gastrointestinal tissues used in bladder augmentations exhibit a greatly increased risk of malignancy, and the bladder microenvironment may play a role in this carcinogenesis. Investigating the influences of the bladder microenvironment on gastrointestinal and urothelial cell cycle checkpoint activation and DNA damage response has been limited by the lack of an appropriate well-differentiated urothelial cell line system.

Methodology/Principal Findings

To meet this need, we have developed a well-differentiated conditionally immortalized urothelial cell line by isolating it from the H-2Kb-tsA58 transgenic mouse. These cells express a thermosensitive SV40 large T antigen that can be deactivated by adjustment of cell culture conditions, allowing the cell line to regain normal control of the cell cycle. The isolated urothelial cell line demonstrates a polygonal, dome-shaped morphology, expresses cytokeratin 18, and exhibits well-developed tight junctions. Adaptation of the urothelial cell line to hyperosmolal culture conditions induces expression of both cytokeratin 20 and uroplakin II, markers of a superficial urothelial cell or “umbrella cell.” This cell line can be maintained indefinitely in culture under permissive conditions but when cultured under non-permissive conditions, large T antigen expression is reduced substantially, leading to increased p53 activity and reduced cellular proliferation.

Conclusions/Significance

This new model of urothelial cells, along with gastrointestinal cell lines previously derived from the H-2Kb-tsA58 transgenic mouse, will be useful for studying the potential mechanisms of carcinogenesis of the augmented bladder.  相似文献   

13.
14.

Background

The analysis of gene expression for tissue homogenates is of limited value because of the considerable cell heterogeneity in tissues. However, several methods are available to isolate a cell type of interest from a complex tissue, the most reliable one being Laser Microdissection (LMD). Cells may be distinguished by their morphology or by specific antigens, but the obligatory staining often results in RNA degradation. Alternatively, particular cell types can be detected in vivo by expression of fluorescent proteins from cell type-specific promoters.

Methodology/Principal Findings

We developed a technique for fixing in vivo fluorescence in brain cells and isolating them by LMD followed by an optimized RNA isolation procedure. RNA isolated from these cells was of equal quality as from unfixed frozen tissue, with clear 28S and 18S rRNA bands of a mass ratio of ∼2∶1. We confirmed the specificity of the amplified RNA from the microdissected fluorescent cells as well as its usefulness and reproducibility for microarray hybridization and quantitative real-time PCR (qRT-PCR).

Conclusions/Significance

Our technique guarantees the isolation of sufficient high quality RNA obtained from specific cell populations of the brain expressing soluble fluorescent marker, which is a critical prerequisite for subsequent gene expression studies by microarray analysis or qRT-PCR.  相似文献   

15.

Background

LysoTracker Green DND-26 is a fluorescent dye that stains acidic compartments in live cells and has been shown to selectively accumulate in lamellar bodies in alveolar type II (AT2) cells in the lung. The aim of this study was to determine whether the accumulation of LysoTracker in lamellar bodies can be used to isolate viable AT2 cells by flow cytometry and track their differentiation in live-cell culture by microscopy.

Methods

Mouse lung cells were sorted on the basis of CD45negCD31negEpCAMposLysoTrackerpos expression and characterized by immunostaining for SP-C and cultured in a three-dimensional epithelial colony-forming unit (CFU-Epi) assay. To track AT2 cell differentiation, lung epithelial stem and progenitor cells were cultured in a CFU-Epi assay with LysoTracker-supplemented media.

Results

The purity of sorted AT2 cells as determined by SP-C staining was 97.4% and viability was 85.3%. LysoTrackerpos AT2 cells generated SP-Cpos alveolar epithelial cell colonies in culture, and when added to the CFU-Epi culture medium, LysoTracker marked the differentiation of stem/progenitor-derived AT2 cells.

Conclusions

This study describes a novel method for isolating AT2 cells from mouse lungs. The high purity and viability of cells attained by this method, makes them suitable for functional analysis in vitro. The application of LysoTracker to live cell cultures will allow better assessment of the cellular and molecular mechanisms that regulate AT2 cell differentiation.  相似文献   

16.

Background & aims

TGFβ superfamily member Activin-A is a multifunctional hormone/cytokine expressed in multiple tissues and cells, where it regulates cellular differentiation, proliferation, inflammation and tissue architecture. High activin-A levels have been reported in alcoholic cirrhosis and non-alcoholic steatohepatitis (NASH). Our aim was to identify the cell types involved in the fibrotic processes induced by activin-A in liver and verify the liver diseases that this molecule can be found increased.

Methods

We studied the effect of activin-A on mouse primary Kupffer cells (KCs) and Hepatic Stellate cells (HSCs) and the levels of activin-A and its inhibitor follistatin in the serum of patients from a large panel of liver diseases.

Results

Activin-A is expressed by mouse hepatocytes, HSCs and Liver Sinusoid Endothelial cells but not KCs. Each cell type expresses different activin receptor combinations. HSCs are unresponsive to activin-A due to downregulation/desensitization of type-II activin receptors, while KCs respond by increasing the expression/production of TNFα και TGFβ1. In the presence of KCs or conditioned medium from activin-A treated KCs, HSCs switch to a profibrogenic phenotype, including increased collagen and αSMA expression and migratory capacity. Incubation of activin-A treated KC conditioned medium with antibodies against TNFα and TGFβ1 partially blocks its capacity to activate HSCs. Only patients with alcoholic liver diseases and NASH cirrhosis have significantly higher activin-A levels and activin-A/follistatin ratio.

Conclusions

Activin-A may induce fibrosis in NASH and alcoholic cirrhosis via activation of KCs to express pro-inflammatory molecules that promote HSC-dependent fibrogenesis and could be a target for future anti-fibrotic therapies.  相似文献   

17.

Background

In addition to forming the epithelial barrier against the outside environment keratinocytes are immunologically active cells. In the treatment of severely burned skin, cryoconserved keratinocyte allografts gain in importance. It has been proposed that these allografts accelerate wound healing also due to the expression of a favourable - keratinocyte-derived - cytokine and growth factor milieu.

Methods

In this study the morphology and cytokine expression profile of keratinocytes from skin after acute burn injury was compared to non-burned skin. Skin samples were obtained from patients after severe burn injury and healthy controls. Cells were cultured and secretion of selected inflammatory mediators was quantified using Bioplex Immunoassays. Immunohistochemistry was performed to analyse further functional and morphologic parameters.

Results

Histology revealed increased terminal differentiation of keratinocytes (CK10, CK11) in allografts from non-burned skin compared to a higher portion of proliferative cells (CK5, vimentin) in acute burn injury. Increased levels of IL-1α, IL-2, IL-4, IL-10, IFN-γ and TNFα could be detected in culture media of burn injury skin cultures. Both culture groups contained large amounts of IL-1RA. IL-6 and GM-CSF were increased during the first 15 days of culture of burned skin compared to control skin. Levels of VEGF, FGF-basic, TGF-ß und G-CSF were high in both but not significantly different. Cryoconservation led to a diminished mediator synthesis except for higher levels of intracellular IL-1α and IL-1ß.

Conclusion

Skin allografts from non-burned skin show a different secretion pattern of keratinocyte-derived cytokines and inflammatory mediators compared to keratinocytes after burn injury. As these secreted molecules exert auto- and paracrine effects and subsequently contribute to healing and barrier restoration after acute burn injury therapies affecting this specific cytokine/growth factor micromilieu could be beneficial in burned patients.  相似文献   

18.

Background

Technologies based on DNA microarrays have the potential to provide detailed information on genomic aberrations in tumor cells. In practice a major obstacle for quantitative detection of aberrations is the heterogeneity of clinical tumor tissue. Since tumor tissue invariably contains genetically normal stromal cells, this may lead to a failure to detect aberrations in the tumor cells.

Principal Finding

Using SNP array data from 44 non-small cell lung cancer samples we have developed a bioinformatic algorithm that accurately models the fractions of normal and tumor cells in clinical tumor samples. The proportion of normal cells in combination with SNP array data can be used to detect and quantify copy number neutral loss-of-heterozygosity (CNNLOH) in the tumor cells both in crude tumor tissue and in samples enriched for tumor cells by laser capture microdissection.

Conclusion

Genome-wide quantitative analysis of CNNLOH using the CNNLOH Quantifier method can help to identify recurrent aberrations contributing to tumor development in clinical tumor samples. In addition, SNP-array based analysis of CNNLOH may become important for detection of aberrations that can be used for diagnostic and prognostic purposes.  相似文献   

19.

Background:

One area of nanoscience deals with nanoscopic interactions between nanostructured materials and biological systems. To elucidate the effects of the substrate surface morphology and viscoelasticity on cell proliferation, fractal analysis was performed on endothelial cells cultured on nanocomposite samples based on silicone rubber (SR) and various concentrations of organomodified nanoclay (OC).

Methods:

The nanoclay/SR ratio was tailored to enhance cell behavior via changes in sample substrate surface roughness and viscoelasticity.

Results:

Surface roughness of the cured SR filled with negatively-charged nanosilicate layers had a greater effect than elasticity on cell growth. The surface roughness of SR nanocomposite samples increased with increasing the OC content, leading to enhanced cell growth and extracellular matrix (ECM) remodeling. This was consistent with the decrease in SR segmental motions and damping factor as the primary viscoelastic parameters by the nanosilicate layers with increasing clay concentrations.

Conclusions:

The inclusion of clay nanolayers affected the growth and behavior of endothelial cells on microtextured SR.Key Words: Silicone rubber, Nanoclay, Elastic Modulus, Roughness, Cell proliferation  相似文献   

20.

Background

An inducible release of soluble junctional adhesion molecule-A (sJAM-A) under pro-inflammatory conditions was described in cultured non-CNS endothelial cells (EC) and increased sJAM-A serum levels were found to indicate inflammation in non-CNS vascular beds. Here we studied the regulation of JAM-A expression in cultured brain EC and evaluated sJAM-A as a serum biomarker of blood-brain barrier (BBB) function.

Methodology/Principal Findings

As previously reported in non-CNS EC types, pro-inflammatory stimulation of primary or immortalized (hCMEC/D3) human brain microvascular EC (HBMEC) induced a redistribution of cell-bound JAM-A on the cell surface away from tight junctions, along with a dissociation from the cytoskeleton. This was paralleled by reduced immunocytochemical staining of occludin and zonula occludens-1 as well as by increased paracellular permeability for dextran 3000. Both a self-developed ELISA test and Western blot analysis detected a constitutive sJAM-A release by HBMEC into culture supernatants, which importantly was unaffected by pro-inflammatory or hypoxia/reoxygenation challenge. Accordingly, serum levels of sJAM-A were unaltered in 14 patients with clinically active multiple sclerosis compared to 45 stable patients and remained unchanged in 13 patients with acute ischemic non-small vessel stroke over time.

Conclusion

Soluble JAM-A was not suited as a biomarker of BBB breakdown in our hands. The unexpected non-inducibility of sJAM-A release at the human BBB might contribute to a particular resistance of brain EC to inflammatory stimuli, protecting the CNS compartment.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号