首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
A recombinant severe acute respiratory syndrome coronavirus (SARS-CoV) lacking the envelope (E) protein is attenuated in vivo. Here we report that E protein PDZ-binding motif (PBM), a domain involved in protein-protein interactions, is a major determinant of virulence. Elimination of SARS-CoV E protein PBM by using reverse genetics caused a reduction in the deleterious exacerbation of the immune response triggered during infection with the parental virus and virus attenuation. Cellular protein syntenin was identified to bind the E protein PBM during SARS-CoV infection by using three complementary strategies, yeast two-hybrid, reciprocal coimmunoprecipitation and confocal microscopy assays. Syntenin redistributed from the nucleus to the cell cytoplasm during infection with viruses containing the E protein PBM, activating p38 MAPK and leading to the overexpression of inflammatory cytokines. Silencing of syntenin using siRNAs led to a decrease in p38 MAPK activation in SARS-CoV infected cells, further reinforcing their functional relationship. Active p38 MAPK was reduced in lungs of mice infected with SARS-CoVs lacking E protein PBM as compared with the parental virus, leading to a decreased expression of inflammatory cytokines and to virus attenuation. Interestingly, administration of a p38 MAPK inhibitor led to an increase in mice survival after infection with SARS-CoV, confirming the relevance of this pathway in SARS-CoV virulence. Therefore, the E protein PBM is a virulence domain that activates immunopathology most likely by using syntenin as a mediator of p38 MAPK induced inflammation.  相似文献   

2.
3.
4.
5.
Studies on Viral Pathogenesis in Plant Hosts   总被引:4,自引:0,他引:4  
  相似文献   

6.
7.
8.
9.
10.
11.
12.
13.
Tumour mutations corrupt cellular pathways, and accumulate to disrupt, dysregulate, and ultimately avoid mechanisms of cellular control. Yet the very changes that tumour cells undergo to secure their own growth success also render them susceptible to viral infection. Enhanced availability of surface receptors, disruption of antiviral sensing, elevated metabolic activity, disengagement of cell cycle controls, hyperactivation of mitogenic pathways, and apoptotic avoidance all render the malignant cell environment highly supportive to viral replication. The therapeutic use of oncolytic viruses (OVs) with a natural tropism for infecting and subsequently lysing tumour cells is a rapidly progressing area of cancer research. While many OVs exhibit an inherent degree of tropism for transformed cells, this can be further promoted through pharmacological interventions and/or the introduction of viral mutations that generate recombinant oncolytic viruses adapted to successfully replicate only in a malignant cellular environment. Such adaptations that augment OV tumour selectivity are already improving the therapeutic outlook for cancer, and there remains tremendous untapped potential for further innovation.  相似文献   

14.
Yu-ming WANG  Lin LIU   《Virologica Sinica》2008,23(2):132-136
The quasispecies nature of hepatitis B and C virus (HBV, HCV) plays an important role in the pathogenesis, immune escape and drug resistance during chronic infection. Although there is still a lack of effective treatment for hepatitis C, a series of nucleoside analogs (NA) have been developed for the treatment of hepatitis B. NA resistant HBV mutants can accumulate during prolonged therapy and lead to the failure of anti-HBV therapy. Switching to other sensitive NAs can inhibit the emerged resistant mutants. Therefore, understanding the evolution of viral quasispecies under drug pressure is crucial for the establishment of antiviral strategy and the monitoring of antiviral process. Immune response and escape are complicated process, during which both host and virus factors may play their roles. Further understanding of the interaction and interrelationship between host and these viruses may lead to optimized prevention, diagnosis and treatment for chronic hepatitis.  相似文献   

15.
16.
17.
Hendra virus (HeV) and Nipah virus (NiV) are deadly zoonotic viruses for which no vaccines or therapeutics are licensed for human use. Henipavirus infection causes severe respiratory illness and encephalitis. Although the exact route of transmission in human is unknown, epidemiological studies and in vivo studies suggest that the respiratory tract is important for virus replication. However, the target cells in the respiratory tract are unknown, as are the mechanisms by which henipaviruses can cause disease. In this study, we characterized henipavirus pathogenesis using primary cells derived from the human respiratory tract. The growth kinetics of NiV-Malaysia, NiV-Bangladesh, and HeV were determined in bronchial/tracheal epithelial cells (NHBE) and small airway epithelial cells (SAEC). In addition, host responses to infection were assessed by gene expression analysis and immunoassays. Viruses replicated efficiently in both cell types and induced large syncytia. The host response to henipavirus infection in NHBE and SAEC highlighted a difference in the inflammatory response between HeV and NiV strains as well as intrinsic differences in the ability to mount an inflammatory response between NHBE and SAEC. These responses were highest during HeV infection in SAEC, as characterized by the levels of key cytokines (interleukin 6 [IL-6], IL-8, IL-1α, monocyte chemoattractant protein 1 [MCP-1], and colony-stimulating factors) responsible for immune cell recruitment. Finally, we identified virus strain-dependent variability in type I interferon antagonism in NHBE and SAEC: NiV-Malaysia counteracted this pathway more efficiently than NiV-Bangladesh and HeV. These results provide crucial new information in the understanding of henipavirus pathogenesis in the human respiratory tract at an early stage of infection.  相似文献   

18.
近年来,蛋白质组学技术成为医学研究的热点。蛋白质组学是高通量的分析正常及病理条件下机体、组织、细胞或亚细胞成分中的全部蛋白质。对不同空间、不同时间上动态变化的蛋白质组的整体进行比较,分析不同蛋白质组之间在表达数量、表达水平和修饰状态上的差异。蛋白质组学分析作为对生物代谢调控分析的技术手段,以病毒为研究的对象和工具,该技术的研究主要集中在新蛋白的发现、致病机理、疫苗的研制及耐药机制等方面。本文主要概述了蛋白质组学在一些动物传染病病毒致病方面研究和应用,分析了蛋白质组学技术对蛋白功能研究存在的问题和未来发展趋势,以便使研究者了解该技术使用的现状,提供理论参考。  相似文献   

19.
The pneumotachometer is currently the most accepted device to measure tidal breathing, however, it requires the use of a mouthpiece and thus alteration of spontaneous ventilation is implied. Respiratory inductive plethysmography (RIP), which includes two belts, one thoracic and one abdominal, is able to determine spontaneous tidal breathing without the use of a facemask or mouthpiece, however, there are a number of as yet unresolved issues. In this study we aimed to describe and validate a new RIP method, relying on a combination of thoracic RIP and nasal pressure signals taking into account that exercise-induced body movements can easily contaminate RIP thoracic signals by generating tissue motion artifacts. A custom-made time domain algorithm that relies on the elimination of low amplitude artifacts was applied to the raw thoracic RIP signal. Determining this tidal ventilation allowed comparisons between the RIP signal and simultaneously-recorded airflow signals from a calibrated pneumotachometer (PT). We assessed 206 comparisons from 30 volunteers who were asked to breathe spontaneously at rest and during walking on the spot. Comparisons between RIP signals processed by our algorithm and PT showed highly significant correlations for tidal volume (Vt), inspiratory (Ti) and expiratory times (Te). Moreover, bias calculated using the Bland and Altman method were reasonably low for Vt and Ti (0.04 L and 0.02 s, respectively), and acceptable for Te (<0.1 s) and the intercept from regression relationships (0.01 L, 0.06 s, 0.17 s respectively). The Ti/Ttot and Vt/Ti ratios obtained with the two methods were also statistically correlated. We conclude that our methodology (filtering by our algorithm and calibrating with our calibration procedure) for thoracic RIP renders this technique sufficiently accurate to evaluate tidal ventilation variation at rest and during mild to moderate physical activity.  相似文献   

20.
Respiratory viruses cause substantial disease and are a significant healthcare burden. Virus-induced inflammation can be detrimental to the host, causing symptoms during acute infection and leading to damage that contributes to long-term residual lung disease. Prostaglandin E2 (PGE2) is a lipid mediator that is increased in response to many viral infections, and inhibition of PGE2 production during respiratory viral infection often leads to a decreased inflammatory response. We tested the hypothesis that PGE2 promotes inflammatory responses to mouse adenovirus type 1 (MAV-1) respiratory infection. Acute MAV-1 infection increased COX-2 expression and PGE2 production in wild type mice. Deficiency of the E prostanoid 2 receptor had no apparent effect on MAV-1 pathogenesis. Virus-induced induction of PGE2, IFN-γ, CXCL1, and CCL5 was reduced in mice deficient in microsomal PGE synthase-1 (mPGES-1-/- mice). However, there were no differences between mPGES-1+/+ and mPGES-1-/- mice in viral replication, recruitment of leukocytes to airways or lung inflammation. Infection of both mPGES‑1+/+ and mPGES-1-/- mice led to protection against reinfection. Thus, while PGE2 promotes the expression of a variety of cytokines in response to acute MAV-1 infection, PGE2 synthesis does not appear to be essential for generating pulmonary immunity.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号