首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Bacillus thuringiensis (Bt) Cry proteins are used as components of biopesticides or expressed in transgenic crops to control diverse insect pests worldwide. These Cry toxins bind to receptors on the midgut brush border membrane and kill enterocytes culminating in larval mortality. Cadherin proteins have been identified as Cry toxin receptors in diverse lepidopteran, coleopteran, and dipteran species. In the present work we report a 185 kDa cadherin (AdCad1) from larvae of the lesser mealworm (Alphitobius diaperinus) larvae as the first identified receptor for Cry3Bb toxin. The AdCad1 protein contains typical structural components for Cry toxin receptor cadherins, including nine cadherin repeats (CR9), a membrane-proximal extracellular domain (MPED) and a cytosolic region. Peptides corresponding to the CR9 and MPED regions bound Cry3Bb toxin with high affinities (23 nM and 40 nM) and significantly synergized Cry3Bb toxicity against A. diperinus larvae. Silencing of AdCad1 expression through RNA interference resulted in highly reduced susceptibility to Cry3Bb in A. diperinus larvae. The CR9 peptide fed with toxin to RNAi-treated larvae restored Cry3Bb toxicity. These results are evidences that AdCad1 is a functional receptor of Cry3Bb toxin and that exogenously fed CR9 peptide can overcome the effect of reduced AdCad1expression on Cry3Bb toxicity to larvae.  相似文献   

3.
The acyl-CoA-binding proteins (ACBP) constitute a family of conserved proteins that bind acyl-CoA with high affinity and protect it from hydrolysis. Thus, ACBPs may have essential roles in basal cellular lipid metabolism. The genome of the insect Rhodnius prolixus encodes five ACBP genes similar to those described for other insect species. The qPCR analysis revealed that these genes have characteristic expression profiles in insect organs, suggesting that they have specific roles in insect physiology. Recombinant RpACBP-1 was able to bind acyl-CoA in an in vitro gel-shift assay. Moreover, heterologous RpACBP-1 expression in acb1Δ mutant yeast rescued the multi-lobed vacuole phenotype, indicating that RpACBP-1 acts as a bona fide acyl-CoA-binding protein. RpACBP-1 knockdown using RNAi caused triacylglycerol accumulation in the insect posterior midgut and a reduction in the number of deposited eggs. The amount of stored triacylglycerol was reduced in flight muscle, and the incorporation of fatty acids in cholesteryl esters was increased in the fat body. These results showed that RpACBP-1 participates in several lipid metabolism steps in R. prolixus.  相似文献   

4.
5.
Insect cellular immune reactions differ depending on the target species. Phagocytosis is activated to scavenge microorganisms such as bacteria and fungi. On the other hand, larger invaders such as parasitoid wasps are eliminated by activation of encapsulation. In this study, we hypothesized that novel determinants regulate cellular immunities independent of surface molecular pattern recognition involving pattern recognition receptors (PRRs). Immune-related genes differentially expressed depending on the treated material size were screened in larval hemocytes of the rice armyworm, Mythimna separata. Consequently, we identified a novel C-type lectin gene up-regulated by injection of large beads but not small beads of identical material. Examination of in vitro effect of the recombinant protein on the immune reactions clarified that the protein activated encapsulation reaction, while it suppressed phagocytosis. These results suggest that this novel C-type lectin designated “encapsulation promoting lectin (EPL)” regulates cellular immunity by a novel immune target size-recognition mechanism.  相似文献   

6.
Because Bombyx mori ABC transporter C2 (BmABCC2) has 1000-fold higher potential than B. mori cadherin-like protein as a receptor for Bacillus thuringiensis Cry1Aa toxin (Tanaka et al., 2013), the gate-opening ability of the latent pore under six extracellular loops (ECLs) of BmABCC2 was expected to be the reason for its higher potential (Heckel, 2012). In this study, cell swelling assays in Sf9 cells showed that BmABCC2 mutants lacking substrate-excreting activity retained receptor activity, indicating that the gate-opening activity of BmABCC2 is not responsible for Cry1Aa toxicity. The analysis of 29 BmABCC2 mutants demonstrated that 770DYWL773 of ECL 4 comprise a putative binding site to Cry1Aa. This suggests that specific toxicity of Cry1Aa toxin to a restricted range of lepidopteran insects is dependent on conservation and variation in the amino acid residues around 770DYWL773 of ECL 4 in the ABCC2.  相似文献   

7.
Transposable elements (TEs) are widespread in insect's genomes. However, there are wide differences in the proportion of the total DNA content occupied by these repetitive sequences in different species. We have analyzed the TEs present in R. prolixus (vector of the Chagas disease) and showed that 3.0% of this genome is occupied by Class II TEs, belonging mainly to the Tc1-mariner superfamily (1.65%) and MITEs (1.84%). Interestingly, most of this genomic content is due to the expansion of two subfamilies belonging to: irritans himar, a well characterized subfamily of mariners, and prolixus1, one of the two novel subfamilies here described. The high amount of sequences in these subfamilies suggests that bursts of transposition occurred during the life cycle of this family. In an attempt to characterize these elements, we performed an in silico analysis of the sequences corresponding to the DDD/E domain of the transposase gene. We performed an evolutionary analysis including network and Bayesian coalescent-based methods in order to infer the dynamics of the amplification, as well as to estimate the time of the bursts identified in these subfamilies. Given our data, we hypothesized that the TE expansions occurred around the time of speciation of R. prolixus around 1.4 mya. This suggestion lays on the “Transposon Model” of TE evolution, in which the members of a TE population that are replicative active are present at multiple loci in the genome, but their replicative potential varies, and of the “Life Cycle Model” that states that when present-day TEs have been involved in amplification bursts, they share an ancestral copy that dates back to this initial amplification.  相似文献   

8.
9.
Klebsiella pneumoniae is an opportunistic pathogen, which causes a wide range of nosocomial infections. Recently, antibiotic resistance makes K. pneumoniae infection difficult to deal with. Investigation on virulence determinants of K. pneumoniae can provide more information about pathogenesis and unveil new targets for treatment or vaccine development. In this study, SitA, a Fur-regulated divalent cation transporter, was found significantly increased when K. pneumoniae was cultured in a nutrient-limited condition. A sitA-deletion strain (ΔsitA) was created to characterize the importance of SitA in virulence. ΔsitA showed higher sensitivity toward hydroperoxide than its parental strain. In a mouse intraperitoneal infection model, the survival rate of mice infected with ΔsitA strain increased greatly when compared with that of mice infected with the parental strain, suggesting that sitA deletion attenuates the bacterial virulence in vivo. To test whether ΔsitA strain is a potential vaccine candidate, mice were immunized with inactivated bacteria and then challenged with the wild-type strain. The results showed that using ΔsitA mutant protected mice better than using the wild-type strain or the capsule-negative congenic bacteria. In summary, SitA was found being important for the growth of K. pneumoniae in vivo and deleting sitA might be a potential approach to generate vaccines against K. pneumoniae.  相似文献   

10.
Bacillus thuringiensis subsp. jegathesan produces Cry11Ba crystal protein with high toxicity to mosquito larvae. The Cry11Ba toxicity is dependent on its receptors on mosquito larval midgut epithelial cells. Previously, a cadherin-like protein (AgCad2), aminopeptidase (AgAPN2) and alkaline phosphatase (AgALP1) were reported to be involved in regulation of Cry11Ba toxicity on Anopheles gambiae larvae. Here, the cDNAs encoding α-amylase (AgAmy1) and α-glucosidase (Agm3) were cloned from A. gambiae larva midgut. Both are glycophosphatidylinositol (GPI) anchored proteins on brush border membranes (BBMV). Immunohistochemistry revealed their localization on different regions of the larval midgut. AgAmy1 and Agm3 bound Cry11Ba with high affinity, 37.6 nM and 21.1 nM respectively. Cry11Ba toxicity against A. gambiae larvae was neutralized by both AgAmy1 and Agm3. The results provide evidence that both AgAmy1 and Agm3 function as receptors of Cry11Ba in A. gambiae.  相似文献   

11.
Gossypol is a polyphenolic secondary metabolite produced by cotton plants, which is toxic to many organisms. Gossypol's aldehyde groups are especially reactive, forming Schiff bases with amino acids of proteins and cross-linking them, inhibiting enzyme activities and contributing to toxicity. Very little is known about gossypol's mode of action and its detoxification in cotton-feeding insects that can tolerate certain concentrations of this compound. Here, we tested the toxicity of gossypol and a gossypol derivative lacking free aldehyde groups (SB-gossypol) toward Helicoverpa armigera and Heliothis virescens, two important pests on cotton plants. Larval feeding studies with these two species on artificial diet supplemented with gossypol or SB-gossypol revealed no detectable toxicity of gossypol, when the aldehyde groups were absent. A cytochrome P450 enzyme, CYP6AE14, is upregulated in H. armigera feeding on gossypol, and has been claimed to directly detoxify gossypol. However, using in vitro assays with heterologously expressed CYP6AE14, no metabolites of gossypol were detected, and further studies suggest that gossypol is not a direct substrate of CYP6AE14. Furthermore, larvae feeding on many other plant toxins also upregulate CYP6AE14. Our data demonstrate that the aldehyde groups are critical for the toxicity of gossypol when ingested by H. armigera and H. virescens larvae, and suggest that CYP6AE14 is not directly involved in gossypol metabolism, but may play a role in the general stress response of H. armigera larvae toward plant toxins.  相似文献   

12.
Insecticidal crystal (Cry) proteins from Bacillus thuringiensis (Bt) are highly active against Lepidoptera. However, field-evolved resistance to Bt toxins is on the rise. The 12-cadherin domain protein HevCaLP and the ABC transporter HevABCC2 are both genetically linked to Cry toxin resistance in Heliothis virescens. We investigated their interaction using stably expressing non-lytic clonal Sf9 cell lines expressing either protein or both together. Untransfected Sf9 cells are innately sensitive to Cry1Ca toxin, but not to Cry1A toxins; and quantitative PCR revealed negligible expression of genes involved in Cry1A toxicity such as cadherin, ABCC2, alkaline phosphatase (ALP) and aminopeptidase N (APN). Cry1Aa, Cry1Ab or Cry1Ac caused swelling of Sf9 cells expressing HevABCC2, and caused faster swelling, lysis and up to 86% mortality in cells expressing both proteins. No such effect was observed in control Sf9 cells or in cells expressing only HevCaLP. The results of a mixing experiment demonstrated that both proteins need to be expressed within the same cell for high cytotoxicity, and suggest a novel role for HevCaLP. Binding assays showed that the toxin-receptor interaction is specific. Our findings confirm that HevABCC2 is the central target in Cry1A toxin mode of action, and that HevCaLP plays a supporting role in increasing Cry1A toxicity.  相似文献   

13.
Culex mosquitoes have emerged as important model organisms for mosquito biology, and are disease vectors for multiple mosquito-borne pathogens, including West Nile virus. We characterized epoxide hydrolase activities in the mosquito Culex quinquefasciatus, which suggested multiple forms of epoxide hydrolases were present. We found EH activities on epoxy eicosatrienoic acids (EETs). EETs and other eicosanoids are well-established lipid signaling molecules in vertebrates. We showed EETs can be synthesized in vitro from arachidonic acids by mosquito lysate, and EETs were also detected in vivo both in larvae and adult mosquitoes by LC-MS/MS. The EH activities on EETs can be induced by blood feeding, and the highest activity was observed in the midgut of female mosquitoes. The enzyme activities on EETs can be inhibited by urea-based inhibitors designed for mammalian soluble epoxide hydrolases (sEH). The sEH inhibitors have been shown to play diverse biological roles in mammalian systems, and they can be useful tools to study the function of EETs in mosquitoes. Besides juvenile hormone metabolism and detoxification, insect epoxide hydrolases may also play a role in regulating lipid signaling molecules, such as EETs and other epoxy fatty acids, synthesized in vivo or obtained from blood feeding by female mosquitoes.  相似文献   

14.
Sternal pores are important features for identification of male thrips, especially within the subfamily Thripinae. They vary in shape, size and distribution even between species of one genus. Their functional role is speculated to be that of sex- and/or aggregation pheromone production. Yet, sexual aggregations are not reported in Echinothrips americanus, known to have sternal pores, while we observed aggregations in Megalurothrips sjostedti, previously reported to lack them.We examined the sternal glands and pores of the thripine species E. americanus and M. sjostedti males, in comparison with those of Frankliniella occidentalis using light microscopy, as well as scanning and transmission electron microscopy. Pore plates of F. occidentalis were ellipsoid and medial on sternites III–VII, while in E. americanus they were distributed as multiple micro pore plates on sternites III–VIII. In M. sjostedti they appeared as an extremely small pore in front of the posterior margin of each of sternites IV–VII. Pore plate and pore plate area were distributed similarly on sternites III–VII in F. occidentalis. However, in E. americanus the total pore plate area increased significantly from sternites III to VIII. Ultrastructure of cells associated with sternal glands showed typical characteristics of gland cells that differ in size, shape and number. The function of sternal glands is further discussed on the basis of morphological comparisons with other thrips species.  相似文献   

15.
Adult development and production of up to 400 eggs within the pupal case of female silkmoths are both dependent on 20-hydroxyecdysone (20E), the steroid hormone of insects. When adult development was initiated with tebufenozide, the non-steroidal ecdysteroid agonist, instead of 20E, full development of all epidermal tissues like the wing was witnessed, but ovarian growth and egg formation was minimal. Administration of tebufenozide to female pharate adults caused disruption of the follicular epithelium, produced nurse cell damage, and inhibited oogenesis. Reduced ability to synthesize RNA and protein accompanied these tebufenozide induced morphological disturbances of the follicles. In vivo accumulation of vitellogenin (Vg) from the hemolymph was reduced in tebufenozide treated female ovaries as well as their ability to accumulate Vg in vitro. Determination of protein staining intensity and antibody reactivity of Vg pointed out that hemolymph Vg level remained fairly constant all through adult development whether induced by 20E or tebufenozide. Measurement of hemolymph volumes and hemolymph Vg levels of control and experimental animals allowed us to conclude that egg development involves the uptake of all the hemolymph proteins and not Vg alone. The loss of hemolymph that accompanies egg maturation was considerably reduced in tebufenozide initiated female pharate adults. 20E could not overcome ovarian growth inhibitory effects of tebufenozide. Dual mechanisms, one involving ecdysteroid antagonist action at the beginning of development, and the other unrelated to that function during heightened egg formation, are needed explain the biphasic inhibitory actions of tebufenozide on silkmoth ovaries.  相似文献   

16.
The potencies of therapeutic preparations of gonadotrophins of human, urinary origin, which comprise a heterogenous mix of isoforms with follicle-stimulating hormone (FSH) and luteinizing hormone (LH) bioactivities, are standardized by WHO International Standards (IS). We report here, the evaluation, through an international collaborative study, of a candidate preparation, coded 10/286, to replace the 4th IS, 98/704, for human, urinary FSH and LH (Menotrophin) which has been used for many years for the potency assignment of therapeutic preparations using bioassays. The mean FSH and LH bioactivities of 10/286, determined by in vivo bioassays in terms of 98/704, were 183 IU per ampoule (95% confidence limits 165–202) and 177 IU per ampoule (95% confidence limits 159–197), respectively.  相似文献   

17.
In the silkworm Bombyx mori, three fibroin genes, fibroin-heavy-chain (fibH), fibroin-light-chain (fibL) and fibrohexamerin (fhx), are coexpressed only in the posterior silk gland (PSG) cells, while the sericin genes encoding silk glue proteins are expressed in the middle silk gland (MSG) cells. Silk gland factor-2 (SGF-2) is a PSG-specific activator complex of fibH, composed of a LIM-homeodomain protein, Awh, and its cofactors, Ldb and Lcaf. We investigated whether SGF-2 can activate other fibroin genes using transgenic silkworms. The genes for Ldb and Lcaf were expressed ubiquitously in various tissues, while the gene for Awh was expressed strictly specific in PSG of the wild type silkworms. Misexpression of Awh in transgenic silkworms induced ectopic expression of fibL and fhx as well as fibH in MSG. Coincidently with the induction of fibL and fhx by Awh, binding of SGF-2 to the promoter of fibL and fhx was detected in vitro, and SGF-2 binds directly to the fhx core promoter. Ectopic expression of the fibroin genes was observed at high levels in the middle part of MSG. Moreover, fibL and fhx were induced in the anterior silk gland (ASG) of the transgenic silkworms, but fibH was not. These results indicate that Awh is a key activator of all three fibroin genes, and the activity is probably regulated in conjunction with additional factors.  相似文献   

18.
Positive selection is thought to contribute to the functional diversification of insect-inducible protease inhibitors in plants in response to selective pressures exerted by the digestive proteases of their herbivorous enemies. Here we assessed whether a reciprocal evolutionary process takes place on the insect side, and whether ingestion of a positively selected plant inhibitor may translate into a measurable rebalancing of midgut proteases in vivo. Midgut Cys proteases of herbivorous Coleoptera, including the major pest Colorado potato beetle (Leptinotarsa decemlineata), were first compared using a codon-based evolutionary model to look for the occurrence of hypervariable, positively selected amino acid sites among the tested sequences. Hypervariable sites were found, distributed within –or close to– amino acid regions interacting with Cys-type inhibitors of the plant cystatin protein family. A close examination of L. decemlineata sequences indicated a link between their assignment to protease functional families and amino acid identity at positively selected sites. A function-diversifying role for positive selection was further suggested empirically by in vitro protease assays and a shotgun proteomic analysis of L. decemlineata Cys proteases showing a differential rebalancing of protease functional family complements in larvae fed single variants of a model cystatin mutated at positively selected amino acid sites. These data confirm overall the occurrence of hypervariable, positively selected amino acid sites in herbivorous Coleoptera digestive Cys proteases. They also support the idea of an adaptive role for positive selection, useful to generate functionally diverse proteases in insect herbivores ingesting functionally diverse, rapidly evolving dietary cystatins.  相似文献   

19.
The objectives of the present study were to determine if the molecular weight of condensed tannins (CT) from warm-season perennial legumes affects the biological activity of CT relative to suppression of methane (CH4) production by ruminants, and to identify potential North American native forage plants to use for mitigation of enteric CH4 emission. Eight North American native warm-season perennial legumes were evaluated: Leucaena retusa Benth. (littleleaf leadtree), Desmanthus illinoensis (Michx.) MacMill. Ex B.L. Rob. & Fernald (Illinois bundleflower), Lespedeza stuevei Nutt. (tall lespedeza), Mimosa strigillosa Torr. & A. Gray (powderpuff), Neptunia lutea (Leavenworth) Benth. (yellow puff), two ecotypes of Acacia angustissima var. hirta (Nutt.) B.L. Rob (prairie acacia), and Desmodium paniculatum (L.) DC. var. paniculatum (panicledleaf ticktrefoil). Two introduced legumes were also included: Arachis glabrata Benth. (rhizoma peanut) and Lespedeza cuneata (Dum. Cours.) G. Don (sericea lespedeza). Forages were fermented with cattle rumen fluid for 48 h anaerobically using an in vitro gas production technique. D. paniculatum, L. stuevei, and M. strigillosa were high in CT, ranging from 11.7 to 12.5%. D. illinoensis, L. cuneata, N. lutea, and two ecotypes of A. angustissima var. hirta had less CT (P < 0.05), ranging from 8.1 to 8.9%, whereas L. retusa and A. glabrata had the least CT (P < 0.05), measuring 3.2 and 0.5%, respectively. Weight-average molecular weight (MW) of CT ranged from 1483 Da for L. cuneata to 552 Da for L. stuevei. In vitro CH4 production was greatest for L. retusa and A. glabrata at 40.7 mg/g DM and 38.2 mg/g DM, respectively. The least amount of in vitro CH4 was produced by fermentation of two ecotypes of A. angustissima var. hirta, which measured 0.8 and 0.6 mg/g DM, respectively. In vitro CH4 production regressed on CT MW resulted in a R2 of 0.0009 (P = 0.80), strongly suggesting that CT MW does not explain the biological activity of in vitro CH4 production by the forage legumes surveyed. Five of the seven North American native warm-season perennial legumes have promise for use in ruminant diets for the purpose of CH4 emission mitigation.  相似文献   

20.
Pharmacological ascorbate has been shown to induce toxicity in a wide range of cancer cell lines. Pharmacological ascorbate in animal models has shown promise for use in cancer treatment. At pharmacological concentrations the oxidation of ascorbate produces a high flux of H2O2 via the formation of ascorbate radical (Asc•-). The rate of oxidation of ascorbate is principally a function of the level of catalytically active metals. Iron in cell culture media contributes significantly to the rate of H2O2 generation. We hypothesized that increasing intracellular iron would enhance ascorbate-induced cytotoxicity and that iron chelators could modulate the catalytic efficiency with respect to ascorbate oxidation. Treatment of cells with the iron-chelators deferoxamine (DFO) or dipyridyl (DPD) in the presence of 2 mM ascorbate decreased the flux of H2O2 generated by pharmacological ascorbate and reversed ascorbate-induced toxicity. Conversely, increasing the level of intracellular iron by preincubating cells with Fe-hydroxyquinoline (HQ) increased ascorbate toxicity and decreased clonogenic survival. These findings indicate that redox metal metals, e.g., Fe3+/Fe2+, have an important role in ascorbate-induced cytotoxicity. Approaches that increase catalytic iron could potentially enhance the cytotoxicity of pharmacological ascorbate in vivo.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号