首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 32 毫秒
1.
2.
3.
4.
5.

Background

Microsatellite loci have high mutation rates and thus are indicative of mutational processes within the genome. By concentrating on the symbiotic and aposymbiotic cnidarians, we investigated if microsatellite abundances follow a phylogenetic or ecological pattern. Individuals from eight species were shotgun sequenced using 454 GS-FLX Titanium technology. Sequences from the three available cnidarian genomes (Nematostella vectensis, Hydra magnipapillata and Acropora digitifera) were added to the analysis for a total of eleven species representing two classes, three subclasses and eight orders within the phylum Cnidaria.

Results

Trinucleotide and tetranucleotide repeats were the most abundant motifs, followed by hexa- and dinucleotides. Pentanucleotides were the least abundant motif in the data set. Hierarchical clustering and log likelihood ratio tests revealed a weak relationship between phylogeny and microsatellite content. Further, comparisons between cnidaria harboring intracellular dinoflagellates and those that do not, show microsatellite coverage is higher in the latter group.

Conclusions

Our results support previous studies that found tri- and tetranucleotides to be the most abundant motifs in invertebrates. Differences in microsatellite coverage and composition between symbiotic and non-symbiotic cnidaria suggest the presence/absence of dinoflagellates might place restrictions on the host genome.

Electronic supplementary material

The online version of this article (doi:10.1186/1471-2164-15-939) contains supplementary material, which is available to authorized users.  相似文献   

6.
7.
8.
9.
10.
11.

Background

How protein phosphorylation relates to kingdom/phylum divergence is largely unknown and the amino acid residues surrounding the phosphorylation site have profound importance on protein kinase–substrate interactions. Standard motif analysis is not adequate for large scale comparative analysis because each phophopeptide is assigned to a unique motif and perform poorly with the unbalanced nature of the input datasets.

Results

First the discriminative n-grams of five species from five different kingdom/phyla were identified. A signature with 5540 discriminative n-grams that could be found in other species from the same kingdoms/phyla was created. Using a test data set, the ability of the signature to classify species in their corresponding kingdom/phylum was confirmed using classification methods. Lastly, ortholog proteins among proteins with n-grams were identified in order to determine to what degree was the identity of the detected n-grams a property of phosphosites rather than a consequence of species-specific or kingdom/phylum-specific protein inventory. The motifs were grouped in clusters of equal physico-chemical nature and their distribution was similar between species in the same kingdom/phylum while clear differences were found among species of different kingdom/phylum. For example, the animal-specific top discriminative n-grams contained many basic amino acids and the plant-specific motifs were mainly acidic. Secondary structure prediction methods show that the discriminative n-grams in the majority of the cases lack from a regular secondary structure as on average they had 88 % of random coil compared to 66 % found in the phosphoproteins they were derived from.

Conclusions

The discriminative n-grams were able to classify organisms in their corresponding kingdom/phylum, they show different patterns among species of different kingdom/phylum and these regions can contribute to evolutionary divergence as they are in disordered regions that can evolve rapidly. The differences found possibly reflect group-specific differences in the kinomes of the different groups of species.

Electronic supplementary material

The online version of this article (doi:10.1186/s12859-015-0657-2) contains supplementary material, which is available to authorized users.  相似文献   

12.
13.
14.
15.
16.
17.
18.
19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号