首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
新城疫(Newcastle disease,ND)是禽类的病毒性疾病之一,能引发禽类神经系统、消化系统和呼吸系统损伤,死亡率高达30%,对家禽养殖形成了严重制约,因此,研究ND具有重要的经济意义。合理使用疫苗是防控新城疫疫情的主要方法。自1950年以来,新城疫减毒活疫苗和灭活疫苗已被广泛使用,之后载体疫苗也进入商业化应用阶段。此外,疫苗佐剂的选择以及递送途径的优化也进入研究人员的视野。基于此,分析了新城疫传统疫苗、载体疫苗、病毒样颗粒疫苗的研发现状及前景,介绍了纳米粒子和新型免疫佐剂在新城疫疫苗研发过程中的应用进展,并总结了目前国内外常见的新城疫商业化疫苗,旨在为研制更高效、廉价的新城疫疫苗提供参考,从而进一步控制当前新城疫疫情的蔓延。  相似文献   

2.
The efficacy, safety, speed, scalability and cost‐effectiveness of producing hemagglutinin‐based virus‐like particle (VLP) vaccines in plants are well‐established for human influenza, but untested for the massive poultry influenza vaccine market that remains dominated by traditional egg‐grown oil‐emulsion whole inactivated virus vaccines. For optimal efficacy, a vaccine should be closely antigenically matched to the field strain, requiring that influenza A vaccines be updated regularly. In this study, an H6 subtype VLP transiently expressed in Nicotiana benthamiana was formulated into a vaccine and evaluated for efficacy in chickens against challenge with a heterologous H6N2 virus. A single dose of the plant‐produced H6 VLP vaccine elicited an immune response comparable to two doses of a commercial inactivated H6N2 vaccine, with mean hemagglutination inhibition titres of 9.3 log2 and 8.8 log2, respectively. Compared to the non‐vaccinated control, the H6 VLP vaccine significantly reduced the proportion of shedders and the magnitude of viral shedding by >100‐fold in the oropharynx and >6‐fold in the cloaca, and shortened oropharyngeal viral shedding by at least a week. Despite its potency, the cost of the antigenic mismatch between the inactivated H6N2 vaccine and challenge strain was evident not only in this vaccine's failure to reduce viral shedding compared to the non‐vaccinated group, but its apparent exacerbation of oropharyngeal viral shedding until 21 days post‐challenge. We estimate that a kilogram of plant leaf material can produce H6 VLP vaccines sufficient for between 5000 and 30 000 chickens, depending on the effective dose and whether one or two immunizations are administered.  相似文献   

3.
In view of the use of potentially contaminated foetal calf serum (FCS) in cell cultures pestiviruses may be present in live viral vaccines. Thirty-six lots of human live viral vaccines produced by three manufacturers were tested for the presence of pestiviruses. Bovine viral diarrhoea virus (BVDV) RNA was detected in 33% of the vaccine lots. All positive results were caused by the mumps component of a single manufacturer. Partial sequences of the 5' untranslated region of BVD viral RNA were determined. The sequences were closely related to that of the NADL strain of BVDV. The amount of BVDV RNA in the vaccines was determined by real-time RT-PCR using the LightCycler. Between 3.3*10(2) and 6.2*10(5) RNA copies per dose were found to be present in the vaccine samples.Additionally, culture tests were done with FCS and human diploid cells used in the vaccine production of the manufacturer whose vaccines were positive by PCR. All attempts to detect virus antigen in MRC-5 human diploid cells or to infect these cells with BVDV failed. This suggests that BVDV RNA detected in human live viral vaccines represents passive carry over of BVDV from contaminated FCS rather than active virus replication in human diploid cells. Our results indicate that contamination with BVDV of FCS used in vaccine production does not appear to be of immediate concern to human health. Furthermore, our results indicate that gamma-irradiation of FCS destroys BVDV particles and is also effective in preventing the presence of BVDV RNA in the vaccines.  相似文献   

4.
The safety of veterinary vaccines is of paramount importance and it is significantly jeopardised by extraneous agents such as bacteria, mycoplasma, Chlamydia and viruses. Several critical steps of vaccine manufacture involve a potential risk of viral contamination. Viruses, as extraneous, agents can be divided into two main groups. Group 1 agents, such as Pestivirus, chicken anaemia virus (CAV), and egg drop syndrome virus (EDSV) are well-known to manufacturers and authorities. Compendial detection methods, clear guidelines and legislation have been established to minimise the risk of contamination with these agents. Contrary to group 1, group 2 agents like Torque Teno virus (TTV) or RD114, a replication-competent feline γ-retrovirus, have only recently been recognised and their role as contaminants needs further investigation.Randomly selected veterinary vaccines used between 1992 and 2009 were tested by nucleic acid amplification for CAV, EDSV, and TTV. Pestivirus contamination was examined in 33 vaccines used between 1996 and 2006 and a further 27 vaccines used between 2007 and 2009 based on random selection of these vaccines. In addition to random tests done on vaccines used from 2007 on, 12 batches of live Aujeszky's disease vaccines submitted to our laboratory for Official Control Authority Batch Release (OCABR) were also tested for Pestivirus.  相似文献   

5.
M B?ttiger  B Larsson 《Biologicals》1992,20(4):267-275
Swedish inactivated polio vaccines have contained per single human dose a mean amount of viral antigen equivalent to 1 x 10(7.5) CCID50 of type 1, 1 x 10(7.4) of type 2 and 1 x 10(7.8) of type 3 produced on primary monkey kidney cells. Potency tests were made in comparison with an equivalent amount of live virus suspension of all three types. Validation of tests has been based on the response to type 1 only. Based on clinical experience with vaccine lots from 1957 and the establishment of the second live reference virus suspension in 1966, the minimum limit of immune response in guinea-pigs--expressed in extinction values--was decided as 1.5 for type 1 and type 3, and 1.0 for type 2. The potency test method used since 1959 in Sweden was two subcutaneous injections 2 weeks apart using 10 guinea-pigs per dilution and blood collected 1 week thereafter. Potency tests made according to European Pharmacopoeia revealed a somewhat lower value for type 2. D-antigen content in Swedish vaccines was low, however, the Swedish vaccine has protected against many episodes or outbreaks of wild virus in Sweden and immunized individuals elsewhere in the world. For the Swedish population a clear-cut clinical motivation for requiring a higher potency for type 2 as required in the European Pharmacopoeia or increased levels of D-antigen in the final product has not been presented. It was concluded that the European Pharmacopoeia method did not distinguish between doses of 0.5-1.0 ml. The minimum limit extinction value for type 2, i.e. 2.0 seemed to high.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

6.
DNA from porcine circovirus type 1 (PCV1) and 2 (PCV2) has recently been detected in two vaccines against rotaviral gastroenteritis from manufacturers A and B. We investigated if PCV1 sequences are present in other viral vaccines. We screened seeds, bulks and final vaccine preparations from ten manufacturers using qRT-PCR. We detected 3.8 × 103 to 1.9 × 107 PCV1 DNA copies/milliliter in live poliovirus seeds for inactivated polio vaccine (IPV) from manufacturer A, however, following inactivation and purification, the finished IPV was PCV1-negative. PCV1 DNA was not detectable in live polio preparations from other vaccine producers. There was no detectable PCV1 DNA in the measles, mumps, rubella and influenza vaccines analysed including material supplied by manufacturer A. We confirmed that the PCV1 genome in the rotavirus vaccine from manufacturer A is near full-length. It contains two mutations in the PCV cap gene, which may result from viral adaptation to Vero cells. Bulks of this vaccine contained 9.8 × 1010 to 1.8 × 1011 PCV1 DNA copies/millilitre and between 4.1 × 107 and 5.5 × 108 DNA copies were in the final doses. We found traces of PCV1 and PCV2 DNA in the rotavirus vaccine from manufacturer B. This highlights the issue of vaccine contamination and may impact on vaccine quality control.  相似文献   

7.

Background

Newcastle disease (ND) is a highly contagious viral disease of poultry caused by pathogenic strains of the Newcastle disease virus (NDV). Live NDV vaccines are administered by drinking water, eyedrops or coarse aerosol spray. To further enhance mucosal immune responses, chitosan nanoparticles were developed for the mucosal delivery of a live NDV vaccine.

Methodology/Principal Findings

A lentogenic live-virus vaccine (strain LaSota) against NDV encapsulated in chitosan nanoparticles were developed using an ionic crosslinking method. Chitosan nanoparticles containing the lentogenic live-virus vaccine against NDV (NDV-CS-NPs) were produced with good morphology, high stability, a mean diameter of 371.1 nm, an encapsulation rate of 77% and a zeta potential of +2.84 mV. The Western blotting analysis showed that NDV structural proteins were detected in NDV-CS-NPs. The virus release assay results of NDV-CS-NPs indicated that NDV was released from NDV-CS-NPs. Chickens immunized orally or intranasally with NDV-CS-NPs were fully protected whereas one out of five chickens immunized with the LaSota live NDV vaccine and three out of five chickens immunized with the inactivated NDV vaccine were dead after challenge with the highly virulent NDV strain F48E9.

Conclusions/Significance

NDV-CS-NPs induced better protection of immunized specific pathogen free chickens compared to the live NDV vaccine strain LaSota and the inactivated NDV vaccine. This study lays a foundation for the further development of mucosal vaccines and drugs encapsulated in chitosan nanoparticles.  相似文献   

8.
M Groudine  S Das  P Neiman  H Weintraub 《Cell》1978,14(4):865-878
We have investigated the copy number, chromosomal subunit conformation and regulation of expression of integrated avian retrovirus genomes. Our results indicate that there are approximately two copies of the endogenous viral genomes (RAV-O) per haploid cell genome in uninfected chick embryo fibroblasts (CEF) and red blood cells (RBC). The copy number and subunit conformation (as measured by DNAasel sensitivity) of the RAV-O genomes are independent of the level of expression of these viral DNA sequences. In cells isolated from embryos of the V+, gs-chf- and gs+chf+ phenotypes, approximately one of the two viral genomes is in a DNAase l-sensitive conformation. Upon infection with an exogenous Rous sarcoma virus (PR-RSV-C), one new viral genome is integrated per haploid CEF genome. The newly integrated RSV genome is completely sensitive to DNAase l, and the subunit conformation of the endogenous viral genomes is not altered by the integration of additional exogenous proviruses. Both the endogenous and newly integrated exogenous viral genomes are present in "nu-body" structures, and the selective sensitivity of these proviral DNA sequences to DNAase l is maintained in isolated nucleosomes. Our experiments revealing the DNAase l sensitivity of one of the two RAV-O genomes in gs-chf-CEF led us to reexamine the level of viral specific RNA in CEF of various GS genotypes. We find that GS/GS CEF contain approximately 100 copies of viral RNA per cell, gs/gs CEF contain no detectable viral RNA, and the heterozygote GS/gs CEF contain approximately 50 copies of viral specific RNA per cell. These results suggest that the GS gene controls production of RAV-O RNA sequences in CEF in a "cis" fashion. In RBCs, however, the expression of the RAV-O genome is independent of the GS gene, with both GS/GS and gs/gs RBCs containing roughly equivalent amounts of viral specific RNA. Our results suggest that the chromosomal structure of the endogenous viral genes is independent of the GS gene, and that the GS gene is cis-acting and tissue-specific.  相似文献   

9.
Although inactivated split-virus influenza vaccines are widely used to render protection against the viral infection, information regarding the effects of the vaccine preparation on the integrity of the viral genomes is currently very limited. In the present study, to gain insight into the physical and genetic alterations of RNA viral genomes in the course of the vaccine preparation, we analyzed the influenza virus A H1N1 hemagglutinin (HA) genome segment in a conventional split-virus influenza vaccine inactivated by formaldehyde, which encodes the major surface protein of the virus. The vaccine solutions were treated with proteinase K prior to RNA purification, and viral genomic RNA was successfully retrieved up to almost eightfold higher than samples without the treatment. Despite the high yield, no full-length bands of the influenza viral genomes were identifiable upon electrophoresis due to severe degradation. Interestingly, however, we were able to amplify a variety of genomic regions including a fragment covering the full-length HA gene using cDNA. Furthermore, sequencing of a series of the fragments for confirmation revealed that the rate of base alteration of the gene in the vaccine was approximately 0.1 %, which is comparable to the spontaneous error rate occurring during PCR. We next constructed a GST expression vector carrying the full-length HA fragment cloned from the vaccine and confirmed that the correct size of the expected GST-fused HA protein was expressed. Taken together, these results demonstrate that a full-length HA RNA genome fragment with comparatively intact sequence information may exist in the inactivated split-virus vaccine. Therefore, these experimental findings on the properties of the HA RNA in the influenza vaccine, may contribute to cautious use of the vaccine in a variety of research areas and protocols.  相似文献   

10.
Infectious bronchitis virus (IBV) causes an infectious respiratory disease of domestic fowl that affects poultry of all ages causing economic problems for the poultry industry worldwide. Although IBV is controlled using live attenuated and inactivated vaccines it continues to be a major problem due to the existence of many serotypes, determined by the surface spike protein resulting in poor cross-protection, and loss of immunogenicity associated with vaccine production. Live attenuated IBV vaccines are produced by the repeated passage in embryonated eggs resulting in spontaneous mutations. As a consequence attenuated viruses have only a few mutations responsible for the loss of virulence, which will differ between vaccines affecting virulence and/or immunogenicity and can revert to virulence. A new generation of vaccines is called for and one means of controlling IBV involves the development of new and safer vaccines by precisely modifying the IBV genome using reverse genetics for the production of rationally attenuated IBVs in order to obtain an optimum balance between loss of virulence and capacity to induce immunity.  相似文献   

11.
The houbara bustard (Chlamydotis undulata undulata) is endangered in North Africa. Through a captive-breeding program established in Morocco by The Emirates Center for Wildlife Propagation, wild populations are being supplemented by the releasing of captive-reared birds. Newcastle disease, which is caused by Newcastle disease virus (NDV; Avian paramyxovirus type 1), can infect houbara bustards and is a significant threat through contact with backyard poultry and possibly wild birds. Three vaccination schedules for Newcastle disease were evaluated by serologic monitoring to assess the efficiency and safety of various types of vaccines (live vs. inactivated), vaccine strains (Hitchner B1 and Clone 30), and administration routes (intranasal vs. injection). We evaluated antibody titers in 211 adult houbara bustards for 10 mo. Antibody titers to NDV in both sera and egg yolks were monitored by hemagglutination inhibition test. The inactivated vaccine provided a high, homogeneous, and durable serologic response in breeders; titers were higher than log2 11 after 4 wk and remained higher than log2 7 after 10 mo. The response to the two live vaccines was similar, and antibody titers did not exceed log2 6 at sero-conversion. Maternally derived antibodies were efficiently transmitted in vitellus, further confirming that offspring of females hyperimmunized with the inactivated vaccine received high titers of maternal antibodies.  相似文献   

12.
In order to determine the best type of rabies vaccine to use as a booster, 78 serological samples from singly vaccinated cattle were analyzed by counterimmunoelectrophoresis technique. The animals were divided into several groups, received the first vaccine dose with modified live virus vaccine (ERA strain) and were revaccinated with inactivated virus or modified live virus vaccines. Boosters were given at 2, 4, 8, 12 and 16 weeks following first vaccination. Results showed high titres in the cases of booster with inactivated vaccine. In all cases, however, detectable antibody titres declined quickly.  相似文献   

13.
A live attenuated influenza vaccine has been available in Germany since the influenza season 2012/13, which is approved for children aged 2-17 years. Using data from our laboratory-based surveillance system, we described the circulation of influenza and non-influenza respiratory viruses during the influenza season 2012/13 in Saxony-Anhalt. We estimated the effectiveness of live and inactivated trivalent influenza vaccines in preventing laboratory-confirmed cases among children and adolescents. From week 40/2012 to 19/2013, sentinel paediatricians systematically swabbed acute respiratory illness patients for testing of influenza and 5 non-influenza viruses by PCR. We compared influenza cases and influenza-negative controls. Among children aged 2-17 years, we calculated overall and vaccine type-specific effectiveness against laboratory-confirmed influenza, stratified by age group (2-6; 7-17 years). We used multivariable logistic regression to adjust estimates for age group, sex and month of illness. Out of 1,307 specimens, 647 (35%) were positive for influenza viruses and 189 (15%) for at least one of the tested non-influenza viruses. For vaccine effectiveness estimation, we included 834 patients (mean age 7.3 years, 53% males) in our analysis. Of 347 (42%) influenza-positive specimens, 61 (18%) were positive for A(H1N1)pdm09, 112 (32%) for A(H3N2) and 174 (50%) for influenza B virus. The adjusted overall vaccine effectiveness including both age groups was 38% (95% CI: 0.8-61%). The adjusted effectiveness for inactivated vaccines was 37% (95% CI: -35-70%) and for live vaccines 84% (95% CI: 45-95%). Effectiveness for the live vaccine was higher in 2-6 year-old children (90%, 95% CI: 20-99%) than in children aged 7-17 years (74%, 95% CI: -32-95%). Our study of the strong influenza season in 2012/13 suggests a high preventive effect of live attenuated influenza vaccine especially among young children, which could not be reached by inactivated vaccines. We recommend the use of live attenuated influenza vaccines in children unless there are contraindications.  相似文献   

14.
从山东某商品代肉鸡场表现生长迟缓的14日龄病鸡群分离到一株鸡传染性贫血病毒(CAV)C14株。C14株感染1日龄SPF鸡能抑制对禽流感病毒(AIV)的抗体反应,还能与禽网状内皮增生病病毒(REV)在免疫抑制上起协同作用。用PCR方法分段扩增出C14基因组的三条部分重叠片段,分别克隆于T载体并进行测序,拼接后得到其全基因组序列。测序结果表明,CAV-C14株基因组全长2298bp,含有3个互相重叠的开放阅读框和1个调控区。将C14与国内外已发表的CAV参考株基因组比较,同源性为97.2%~99.2%。序列比较表明CAV非编码区中含有的多个与复制及转录调控相关已知基序的序列都非常保守。CAV的3个编码基因VP1、VP2和VP3均有一定程度变异,以VP1变异性最大,且不同毒株间的3个蛋白质氨基酸序列的变异是互不相关的。  相似文献   

15.
Despite significant efforts in many countries, there is still no commercially viable dengue vaccine. Currently, attention is focused on the development of either live attenuated vaccines or live attenuated chimaeric vaccines using a variety of backbones. Alternate vaccine approaches, such as whole inactivated virus and subunit vaccines are in the early stages of development, and are each associated with different problems. Subunit vaccines offer the advantage of providing a uniform antigen of well-defined nature, without the added risk of introducing any genetic material into the person being inoculated. Preliminary trials of subunit vaccines (using dengue E protein) in rhesus monkeys have shown promising results. However, the primary disadvantages of dengue subunit vaccines are the low levels of expression of dengue proteins in mammalian or insect cells, as well as the added unknown risks of antigens produced from mammalian cells containing other potential sources of contamination. In the past two decades, plants have emerged as an alternative platform for expression of biopharmaceutical products, including antigens of bacterial, fungal or viral origin. In the present minireview, we highlight the current plant expression technologies used for expression of biopharmaceutical products, with an emphasis on plants as a production system for dengue subunit vaccines.  相似文献   

16.
Dengue is one of the most important emerging vector-borne viral diseases. There are four serotypes of dengue viruses (DENV), each of which is capable of causing self-limited dengue fever (DF) or even life-threatening dengue hemorrhagic fever (DHF) and dengue shock syndrome (DSS). The major clinical manifestations of severe DENV disease are vascular leakage, thrombocytopenia, and hemorrhage, yet the detailed mechanisms are not fully resolved. Besides the direct effects of the virus, immunopathological aspects are also involved in the development of dengue symptoms. Although no licensed dengue vaccine is yet available, several vaccine candidates are under development, including live attenuated virus vaccines, live chimeric virus vaccines, inactivated virus vaccines, and live recombinant, DNA and subunit vaccines. The live attenuated virus vaccines and live chimeric virus vaccines are undergoing clinical evaluation. The other vaccine candidates have been evaluated in preclinical animal models or are being prepared for clinical trials. For the safety and efficacy of dengue vaccines, the immunopathogenic complications such as antibody-mediated enhancement and autoimmunity of dengue disease need to be considered.  相似文献   

17.
Highly pathogenic avian influenza (HPAI) and Newcastle disease (ND) are 2 devastating diseases of poultry, which cause great economic losses to the poultry industry. In the present study, we developed a bivalent vaccine containing antigens of inactivated ND and reassortant HPAI H5N1 viruses as a candidate poultry vaccine, and we evaluated its immunogenicity and protective efficacy in specific pathogen-free chickens. The 6∶2 reassortant H5N1 vaccine strain containing the surface genes of the A/Chicken/Korea/ES/2003(H5N1) virus was successfully generated by reverse genetics. A polybasic cleavage site of the hemagglutinin segment was replaced by a monobasic cleavage site. We characterized the reverse genetics-derived reassortant HPAI H5N1 clade 2.5 vaccine strain by evaluating its growth kinetics in eggs, minimum effective dose in chickens, and cross-clade immunogenicity against HPAI clade 1 and 2. The bivalent vaccine was prepared by emulsifying inactivated ND (La Sota strain) and reassortant HPAI viruses with Montanide ISA 70 adjuvant. A single immunization with this vaccine induced high levels of hemagglutination-inhibiting antibody titers and protected chickens against a lethal challenge with the wild-type HPAI and ND viruses. Our results demonstrate that the bivalent, inactivated vaccine developed in this study is a promising approach for the control of both HPAI H5N1 and ND viral infections.  相似文献   

18.

Background

Respiratory syncytial virus (RSV) is a leading cause of bronchiolitis and pneumonia in young children worldwide, and no vaccine is currently available. Inactivated RSV vaccines tested in the 1960''s led to vaccine-enhanced disease upon viral challenge, which has undermined RSV vaccine development. RSV infection is increasingly being recognized as an important pathogen in the elderly, as well as other individuals with compromised pulmonary immunity. A safe and effective inactivated RSV vaccine would be of tremendous therapeutic benefit to many of these populations.

Principal Findings

In these preclinical studies, a mouse model was utilized to assess the efficacy of a novel, nanoemulsion-adjuvanted, inactivated mucosal RSV vaccine. Our results demonstrate that NE-RSV immunization induced durable, RSV-specific humoral responses, both systemically and in the lungs. Vaccinated mice exhibited increased protection against subsequent live viral challenge, which was associated with an enhanced Th1/Th17 response. In these studies, NE-RSV vaccinated mice displayed no evidence of Th2 mediated immunopotentiation, as has been previously described for other inactivated RSV vaccines.

Conclusions

These studies indicate that nanoemulsion-based inactivated RSV vaccination can augment viral-specific immunity, decrease mucus production and increase viral clearance, without evidence of Th2 immune mediated pathology.  相似文献   

19.
20.

Background

The development of novel influenza vaccines inducing a broad immune response is an important objective. The aim of this study was to evaluate live vaccines which induce both strong humoral and cell-mediated immune responses against the novel human pandemic H1N1 influenza virus, and to show protection in a lethal animal challenge model.

Methodology/Principal Findings

For this purpose, the hemagglutinin (HA) and neuraminidase (NA) genes of the influenza A/California/07/2009 (H1N1) strain (CA/07) were inserted into the replication-deficient modified vaccinia Ankara (MVA) virus - a safe poxviral live vector – resulting in MVA-H1-Ca and MVA-N1-Ca vectors. These live vaccines, together with an inactivated whole virus vaccine, were assessed in a lung infection model using immune competent Balb/c mice, and in a lethal challenge model using severe combined immunodeficient (SCID) mice after passive serum transfer from immunized mice. Balb/c mice vaccinated with the MVA-H1-Ca virus or the inactivated vaccine were fully protected from lung infection after challenge with the influenza H1N1 wild-type strain, while the neuraminidase virus MVA-N1-Ca induced only partial protection. The live vaccines were already protective after a single dose and induced substantial amounts of neutralizing antibodies and of interferon-γ-secreting (IFN-γ) CD4- and CD8 T-cells in lungs and spleens. In the lungs, a rapid increase of HA-specific CD4- and CD8 T cells was observed in vaccinated mice shortly after challenge with influenza swine flu virus, which probably contributes to the strong inhibition of pulmonary viral replication observed. In addition, passive transfer of antisera raised in MVA-H1-Ca vaccinated immune-competent mice protected SCID mice from lethal challenge with the CA/07 wild-type virus.

Conclusions/Significance

The non-replicating MVA-based H1N1 live vaccines induce a broad protective immune response and are promising vaccine candidates for pandemic influenza.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号