共查询到20条相似文献,搜索用时 0 毫秒
1.
The total phenol content in decomposing litter not only acts as a crucial litter quality indicator, but is also closely related to litter humification due to its tight absorption to clay particles. However, limited attention has been focused on the total phenol dynamics in foliar litter in relation to forest gaps. Here, the foliar litter of six representative tree species was incubated on the forest floor from the gap center to the closed canopy of an alpine Minjiang fir (Abies faxoniana) forest in the upper reaches of the Yangtze River and eastern Tibetan Plateau. The dynamics of total phenol concentration in the incubated litter was measured from November 2012 to October 2014. Over two-year incubation, 78.22% to 94.06% of total phenols were lost from the foliar litter, but 52.08% to 86.41% of this occurred in the first year. Forest gaps accelerated the loss of total phenols in the foliar litter in the winter, although they inhibited the loss of total phenols during the growing season in the first year. In comparison with the effects of forest gaps, the variations of litter quality among different species were much stronger on the dynamics of total phenols in the second year. Overall, the loss of total phenols in the foliar litter was slightly higher in both the canopy gap and the expanded gap than in the gap center and under the closed canopy. The results suggest that the predicted decline in snow cover resulting from winter warming or vanishing gaps caused by forest regeneration will retard the loss of total phenol content in the foliar litter of alpine forest ecosystems, especially in the first decomposition year. 相似文献
2.
Soil Fauna Affects Dissolved Carbon and Nitrogen in Foliar Litter in Alpine Forest and Alpine Meadow
Dissolved organic carbon (DOC) and total dissolved nitrogen (TDN) are generally considered important active biogeochemical pools of total carbon and nitrogen. Many studies have documented the contributions of soil fauna to litter decomposition, but the effects of the soil fauna on labile substances (i.e., DOC and TDN) in litter during early decomposition are not completely clear. Therefore, a field litterbag experiment was carried out from 13th November 2013 to 23rd October 2014 in an alpine forest and an alpine meadow located on the eastern Tibetan Plateau. Litterbags with different mesh sizes were used to provide access to or prohibit the access of the soil fauna, and the concentrations of DOC and TDN in the foliar litter were measured during the winter (the onset of freezing, deep freezing and thawing stage) and the growing season (early and late). After one year of field incubation, the concentration of DOC in the litter significantly decreased, whereas the TDN concentration in the litter increased. Similar dynamic patterns were detected under the effects of the soil fauna on both DOC and TDN in the litter between the alpine forest and the alpine meadow. The soil fauna showed greater positive effects on decreasing DOC concentration in the litter in the winter than in the growing season. In contrast, the dynamics of TND in the litter were related to seasonal changes in environmental factors, rather than the soil fauna. In addition, the soil fauna promoted a decrease in litter DOC/TDN ratio in both the alpine forest and the alpine meadow throughout the first year of decomposition, except for in the late growing season. These results suggest that the soil fauna can promote decreases in DOC and TDN concentrations in litter, contributing to early litter decomposition in these cold biomes. 相似文献
3.
To understand the effects of forest gaps on lignin degradation during shrub foliar litter decomposition, a field litterbag experiment was conducted in an alpine fir (Abies faxoniana) forest of the eastern Tibet Plateau. Dwarf bamboo (Fargesia nitida) and willow (Salix paraplesia) foliar litterbags were placed on the forest floor from the gap center to the closed canopy. The litterbags were sampled during snow formation, snow coverage, snow melting and the growing season from October 2010 to October 2012. The lignin concentrations and loss in the litter were measured. Over 2 years, lignin loss was lower in the bamboo litter (34.64–43.89%) than in the willow litter (38.91–55.10%). In the bamboo litter, lignin loss mainly occurred during the first decomposition year, whereas it occurred during the second decomposition year in the willow litter. Both bamboo and willow litter lignin loss decreased from the gap center to the closed canopy during the first year and over the entire 2-year decomposition period. Compared with the closed canopy, the gap center showed higher lignin loss for both bamboo and willow litter during the two winters, but lower lignin loss during the early growing period. Additionally, the dynamics of microbial biomass carbon during litter decomposition followed the same trend as litter lignin loss during the two winters and growing period. These results indicated that alpine forest gaps had significant effects on shrub litter lignin loss and that reduced snow cover during winter warming would inhibit shrub lignin degradation in this alpine forest. 相似文献
4.
Summary Close to a primary lead-zinc-cadmium smelter the standing crop of litter in woodlands was found to be elevated relative to more distant sites. The total litter accumulation is similar to that from contaminated sites reported by other authors but in this case the concentrations of heavy metals are considerably lower than those reported for other sites. Evidence is provided to support the hypothesis that within the woodlands studied, litter accumulation is not closely pH dependent, but is clearly related to both cadmium and zinc concentrations in litter. Litter accumulation occurs in certain particle size ranges and fractionation shows that the weight of accumulated litter in these size ranges is highly correlated to cadmium concentrations. These results are discussed in relation to the reported possible long term effects of metal contamination on decomposition processes and the possibility of adaptation to these adverse effects. 相似文献
5.
以现有42年生的马尾松(Pinus massoniana)人工纯林,经过采伐形成4种不同大小有效面积的林窗(100、400、900和1 600 m2)为研究对象,以未经采伐的42年生马尾松人工纯林为对照样地,采用凋落叶分解袋法,研究不同大小有效面积林窗对马尾松凋落叶、土壤C、N、P及化学计量比和养分损失率的影响。研究结果表明:(1)不同大小有效面积林窗下的马尾松凋落叶、土壤C、N、P含量及养分损失率除土壤P含量和马尾松凋落叶P养分损失率外,均存在显著差异。随着林窗有效面积G1~G4的增大,马尾松凋落叶C、N、P含量均呈降低趋势,三者均在G3林窗体现出较小值。马尾松凋落叶C、N、P养分损失率、土壤C、N、P养分含量多呈抛物线趋势,且均在G2或G3林窗体现出最大值。(2)不同大小有效面积林窗下的马尾松凋落叶、土壤C/N/P均存在显著差异。随着林窗有效面积G1~G4的增大,马尾松人工林土壤C/N/P基本呈抛物线变化趋势,土壤C/N在G3林窗出现最大值,土壤C/P、N/P均在G2林窗体现出最大值;土壤C/N、C/P、N/P变异系数分别为13.31%、16.51%、17.21%。马尾松凋落叶C/N、C/P均在G3体现出最小值。(3)马尾松凋落叶C、N含量与土壤C、C/N/P及环境因子的相关性较强,P含量与它们的相关性较弱;C/N与土壤P、C/N/P及环境因子的相关性较强,C/P、N/P与土壤C/P及环境因子的相关性较强;C、N养分损失率与土壤C、C/N、C/P及环境因子的相关性较强,P养分损失率与土壤C、N、P含量及其化学计量比和环境因子的相关性较弱。土壤C、N、P含量及其化学计量比与环境因子的相关性较强。 相似文献
6.
青藏高原高寒灌丛非生长季节CO2通量特征 总被引:2,自引:1,他引:2
利用2003年和2004年涡度相关系统通量观测资料,对青藏高原高寒灌丛非生长季节CO2通量特征及其主要影响因子进行了分析。(1)从净生态系统CO2交换(NEE)日变化特征看,除13:00~19:00时有较小的CO2净释放以外,其余时段NEE均很小;(2)高寒灌丛非生长季月份间NEE差异明显,4月和10月是CO2净释放量较大,1月和12月CO2净释放量较小;(3)相对温带草原(高杆草大草原)草地类型,低温抑制下的青藏高原高寒灌丛生态系统非生长季节日平均CO2释放率较低;(4)高寒灌丛非生长季NEE日变化模式与5 cm土壤温度变化呈显著正相关,土壤温度是影响非生长季节青藏高原高寒灌丛NEE变化的主导气候因子,同时NEE变化还受降水的影响。 相似文献
7.
Carbon Dioxide Exchange Between the Atmosphere and an Alpine Shrubland Meadow During the Growing Season on the Qinghai-Tibetan Plateau 总被引:11,自引:0,他引:11
Abstract: In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36'N, 101°18'E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations of Potentilla fruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the diurnal course of CO2 flux were -9.38 and 5.02 μmol·m-2 ·s-1 , respectively. The largest daily CO2 uptake was 1.7 g C·m-2 ·d-1 on 14 July, which is less than half that of an alpine Kobresia meadow ecosystem at similar latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photo synthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2 /g H2 O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit.
(Managing editor: Ya-Qin HAN) 相似文献
(Managing editor: Ya-Qin HAN) 相似文献
8.
《植物学报(英文版)》2005,47(3)
In the present study, we used the eddy covariance method to measure CO2 exchange between the atmosphere and an alpine shrubland meadow ecosystem (37°36′ N, 101o18′ E; 3 250 m a.s.l.) on the Qinghai-Tibetan Plateau, China, during the growing season in 2003, from 20 April to 30 September. This meadow is dominated by formations ofPotentillafruticosa L. The soil is Mol-Cryic Cambisols. During the study period, the meadow was not grazed. The maximum rates of CO2 uptake and release derived from the latitudes. Daily CO2 uptake during the measurement period indicated that the alpine shrubland meadow ecosystem may behave as a sink of atmospheric CO2 during the growing season. The daytime CO2 uptake was correlated exponentially or linearly with the daily photosynthetic photon flux density each month. The daytime average water use efficiency of the ecosystem was 6.47 mg CO2/g H2O. The efficiency of the ecosystem increased with a decrease in vapor pressure deficit. 相似文献
9.
Elyn Remy Karen Wuyts Lotte Van Nevel Pallieter De Smedt Pascal Boeckx Kris Verheyen 《Ecosystems》2018,21(4):755-771
Forest edges have become important features in landscapes worldwide. Edges are exposed to a different microclimate and higher atmospheric nitrogen (N) deposition compared to forest interiors. It is, however, unclear how microclimate and elevated N deposition affect nutrient cycling at forest edges. We studied litter decomposition and release of N, phosphorus (P), total cations (TC) and C/N ratios during 18 months via the litterbag technique along edge-to-interior transects in two oak (Quercus robur L.) and two pine (Pinus nigra ssp. laricio Maire and ssp. nigra Arnold) stands in Belgium. Furthermore, the roles of edge conditions (microclimate, atmospheric deposition, soil fauna and soil physicochemical conditions), litter quality and edge decomposer community were investigated as underlying driving factors for litter decomposition. Litter of edge and interior was interchanged (focusing on the influence of edge conditions and litter quality) and placed in open-top chamber (OTC), which create an edge (warmer) microclimate. As the decomposer macrofauna was more abundant at the edge than in the interior, the OTCs were used to isolate the effects of warming versus soil fauna. Oak litter at the edge lost 87 and 37% more mass than litter in the interior. We demonstrated an edge effect on litter decomposition and nutrient release, caused by an interplay of edge conditions (atmospheric deposition of N and TC, soil pH and C/N ratio), litter quality and soil fauna. Consequently, edge effects must be accounted for when quantifying ecosystem processes, such as litter decomposition and nutrient cycling in fragmented landscapes. 相似文献
10.
《菌物研究》2017,(1)
为了筛选更适合修复土壤重金属污染的丛枝菌根真菌(Arbuscular mycorrhizal fungi,AMF)和寄主植物组合,对二月兰(Orychophragum violaeeus)、龙葵(Solanum nigrum)和麦冬(Ophiopogon japonicus)接种AM真菌摩西管柄囊霉(Funneliformis mosseae)和根内球囊霉(Glomus intraradices),通过测定Pb(1 000 mg/kg)和Cd(1.5 mg/kg)污染土壤中上述3种植物生长状况及其对Pb和Cd吸收与富集能力的影响,旨在获得富集重金属能力较强的AM真菌+植物组合。结果表明,施加Cd土壤中二月兰和麦冬的生物量高于对照,施加Pb或Cd处理显著降低龙葵的生长。龙葵对Pb和Cd富集能力最强,麦冬最弱;二月兰对Pb和Cd的转移能力最强。供试植物对Cd的富集能力和转移能力均大于对Pb的富集能力和转移能力。在Pb和Cd的胁迫下,摩西管柄囊霉和根内球囊霉均能促进供试植物的生长发育,并增加植株对Pb和Cd的富集系数,其中,摩西管柄囊霉对龙葵生物量、Pb和Cd富集系数的效应最大。综合考虑植物本身的生物量、对Pb和Cd的耐受力和富集能力,结论认为摩西管柄囊霉+龙葵组合是修复Pb或Cd污染土壤的高效AM真菌+植物组合之一,相关机制有待进一步研究。 相似文献
11.
龚玉莲龙燮强陈壖刘金桃黄汉凤刘琴 《现代生物医学进展》2012,12(12):2235-2238
目的:蕹菜(Ipomoea aquatica Forsk.)Cd(镉)积累典型品种对Cd、Pb(铅)、C(r铬)、N(i镍)等多种重金属的吸收积累及相互关系。方法:采用盆栽试验,分析4个蕹菜Cd积累典型品种在6种土壤上的两茬茎叶及根Cd、Pb、Cr、Ni含量及相关性。结果:①品种和土壤对供试蕹菜典型品种Cd含量的效应均达显著水平(P<0.05),对Pb、Cr和Ni含量的效应因重金属、收获时期及部位而不同,二者对Cd、Pb含量具一定的交互效应。②两茬茎叶Cd含量平均值均为T308>GDB>QLB>QLQ,根Cd平均含量高于茎叶Cd平均含量;除Cr外,根Pb和Ni平均含量均高于茎叶。③Cd、Pb、Cr、Ni含量呈现复杂的相关关系。茎叶Cd含量与Pb含量正相关,且第一茬相关性极显著(P<0.01);Pb含量与Ni含量相关关系明显,第一茬茎叶、根Pb含量与Ni含量的正相关达到显著(P<0.05)或极显著水平(P<0.01),但第二茬茎叶Pb含量与Ni含量却显著负相关(P<0.05);Pb含量与Cr含量的相关性仅第一茬茎叶显著(P<0.05);Cr含量与Ni含量的相关性仅第二茬茎叶达极显著水平(P<0.01)。结论:蕹菜典型品种对Cd、Pb、Cr、Ni的吸收积累存在协同和拮抗两种作用。 相似文献
12.
Sap Flow of Populus euphratica in a Desert Riparian Forest in an Extreme Arid Region During the Growing Season 总被引:1,自引:0,他引:1
Jian-Hua Si Qi Feng Xiao-You Zhang Zong-Qiang Chang Yong-Hong Su Hai-Yang Xi 《植物学报(英文版)》2007,49(4):425-436
In the present study, the heat pulse technique was applied to investigate the stem sap flow of Populus euphratica in a desert riparian forest in an extreme arid region from April to October 2003 and from May to October 2004. The experimental sites were in Qidaoqiao (101 °10′ E, 41°59′ N) and Bayantaolai farm (101°14′ E, 42°01′ N) in Ejina county, in the low reaches of the Heihe River, China. The results indicated that the diurnal change in the velocity of sap flow showed minor fluctuations. At night, the rising of sap flow could be observed in the main tree species because of root pressure. During the growing season, the maximum average velocity was observed in July, followed by August, and the same velocity was observed in September and May; the minimum velocity was observed in October. The transpiration from June to August during the growing season accounted for approximately 70% of the annual total transpiration. The sap flow velocity of P. euphratica trees of different ages could be arranged in the order: 15 yr 〉 25 yr 〉 50 yr. Sap flow velocity was closely related to changes in micrometeorological factors, with average sap flow velocity showing a significant linear correlation with net radiation, air temperature and relative humidity. 相似文献
13.
Photoinhibition of photosynthesis was monitored by means of chlorophyll a fluorescence in leaves of plants growing in 60–80 m2 light gaps in a moist tropical lowland forest located on Barro Colorado Island in central Panama. In these forest gaps, photon flux density was low (less than 100 μmol photons m?2 s?1) during most of the day, but increased on clear days to 1.7-1.8 mmol photons m?2 s?1 for 1–2 h during midday. Nine species representing different taxa and life-forms were examined. Leaves of all species exhibited substantial photoinhibition in situ during high light exposure, as manifested by a decrease in the ratio of variable to maximum fluorescence emission, FV/FM. Recovery (reversion of fluorescence quenching) took place in the shade following high light exposure. The major part of recovery occurred in a fast phase within about 1 h after the high light period. A slow phase of recovery proceeded for another 4–5 h until sunset. After 30–60 min of recovery in the shade, calculated rates of PSII electron transport remained significantly (5–15%) reduced in comparison to rates obtained prior to high light exposure; after about 2 h of recovery, inhibition was negligible. All species responded to the high light periods and following shade periods in a very similar manner. It is concluded that photoinhibition and recovery exhibited by these gap leaves reflect a dynamic regulatory mechanism of thermal energy dissipation that allows plants of different life-forms to cope with periods of high light in tropical forest gaps. 相似文献
14.
Recent research has shown that genetic variation can directly impact community and ecosystem level processes. Populus tremuloides (trembling aspen) is an extremely widespread and genetically diverse tree species important to many North American forest
ecosystems. Using leaf litter from five genotypes grown in a common garden under two nutrient treatments, we tracked litter
decomposition in a natural aspen stand for 1 year. Here we show that aspen leaf litter decomposes and releases carbon, nitrogen,
and sulfur in relation to its genetic identity. In a secondary experiment, we show that the genetic diversity of aspen litter
mixtures can influence decomposition, however weakly so. Overall, nutrient treatments influenced leaf litter decomposition
the most, followed by genetic identity, and then by genetic diversity (if at all in some cases). In this widespread, genetically
diverse, and dominant species, genetic variation within a single species is important to ecosystem functioning. The relatively
weak effect of genetic diversity on the processes measured here does not preclude its importance to ecosystem functioning,
but does suggest that genetic identity and composition are more important than genetic diversity per se. 相似文献
15.
We studied litter decomposition and nutrient release in a tropical seasonal rain forest of Xishuangbanna, Southwest China. The monthly decay rates (k) of leaf litter ranged from 0.02 to 0.21/mo, and correlated with rainfall and soil moisture. Annual k values for leaf litter (1.79/yr) averaged 4.2 times of those for coarse wood (2.5–3.5 cm in diameter). The turnover coefficients of forest floor mass (annual litterfall input/mean floor mass) were: 4.11/yr for flowers and fruits, 2.07/yr for leaves, and 1.17/yr for fine wood (≤2 cm in diameter), with resident time decreasing from fine woods (0.85 yr) to leaves (0.48 yr) and to flower and fruits (0.24 yr). Nutrient residence times in the forest floor mass were ranked as: Ca (1.0 yr) > P (0.92 yr) > Mg (0.64 yr) > N (0.36 yr) > K (0.31 yr). Our data suggest that rates of litter decomposition and nutrient release in the seasonal rain forest of Xishuangbanna are slower than those in typical lowland rain forests, but similar to those in tropical semideciduous forests. 相似文献
16.
Masayuki Ikeda Shinichiro Shimbo Takao Watanabe Fumiko Ohashi Yoshinari Fukui Sonoko Sakuragi Jiro Moriguchi 《Biological trace element research》2011,139(3):269-286
Successful trials were made to estimate the dietary daily intake of lead (Pb) and cadmium (Cd) via foods from the levels of the metals in blood or urine. In practice, 14 and 15 reports were available for Pb and Cd in blood (Pb-B and Cd-B), urine (Pb-U and Cd-U) and 24-h diet duplicates (Pb-D and Cd-D), respectively, from which 68 pairs each of Pb or Cd in blood and food duplicates [each being geometric mean (GM) values for the survey sites] were obtained. Regression analysis revealed that there was a significant correlation between Pb-B and Pb-D, and also between Cd-B and Cd-D, suggesting that it should be possible to estimate both Pb-D and Cd-D from Pb-B and Cd-B, respectively. For Cd-U, the number of available cases was limited (20 pairs), but a significant correlation was detected between Cd-U (as Cd-Ucr, or Cd levels in urine as corrected for creatinine concentration) and Cd-D. Care should be taken in estimating Pb-D from Pb-B, as the ratio of Pb-D over Pb-B may decrease as a function of increasing Pb-B levels. The Pb-D (μg/day) for typical Japanese women with Pb-B of 15 μg/l was best estimated to be 13.5 μg/day. No Cd-B- or Cd-Ucr-dependent change was detected in case of Cd. The best estimate of Cd-D for Cd-B at 1.5 μg/l should be about 19.4 μg/day. 相似文献
17.
We investigated the effect of leaf litter on below ground carbon export and soil carbon formation in order to understand how litter diversity affects carbon cycling in forest ecosystems. 13C labeled and unlabeled leaf litter of beech (Fagus sylvatica) and ash (Fraxinus excelsior), characterized by low and high decomposability, were used in a litter exchange experiment in the Hainich National Park (Thuringia, Germany). Litter was added in pure and mixed treatments with either beech or ash labeled with 13C. We collected soil water in 5 cm mineral soil depth below each treatment biweekly and determined dissolved organic carbon (DOC), δ13C values and anion contents. In addition, we measured carbon concentrations and δ13C values in the organic and mineral soil (collected in 1 cm increments) up to 5 cm soil depth at the end of the experiment. Litter-derived C contributes less than 1% to dissolved organic matter (DOM) collected in 5 cm mineral soil depth. Better decomposable ash litter released significantly more (0.50±0.17%) litter carbon than beech litter (0.17±0.07%). All soil layers held in total around 30% of litter-derived carbon, indicating the large retention potential of litter-derived C in the top soil. Interestingly, in mixed (ash and beech litter) treatments we did not find a higher contribution of better decomposable ash-derived carbon in DOM, O horizon or mineral soil. This suggest that the known selective decomposition of better decomposable litter by soil fauna has no or only minor effects on the release and formation of litter-derived DOM and soil organic matter. Overall our experiment showed that 1) litter-derived carbon is of low importance for dissolved organic carbon release and 2) litter of higher decomposability is faster decomposed, but litter diversity does not influence the carbon flow. 相似文献
18.
Pb and Cd uptake in rice roots 总被引:9,自引:0,他引:9
Pb and Cd are heavy metal pollutants that inhibit plant growth. Using a cultivated rice variety (Dongjin, Oryza sativa L.), we studied how the transport and toxicity of Pb2+ and Cd2+ are affected by the presence of K+ , Ca2+ or Mg2+ . K+ had a little effect on uptake or toxicity of Pb2+ and Cd2+ . Ca2+ or Mg2+ blocked both Cd2+ transport into rice roots and Cd2+ toxicity on root growth, which suggested that their detoxification effect is directly related to their blocking of entry of the heavy metals. Similarly, Ca2+ blocked both Pb2+ transport into the root and Pb2+ toxicity on root growth. The protective effect of Ca2+ on Pb2+ toxicity may be related to its inhibition of the heavy metal accumulation in the root tip, a potential target site of Pb2+ toxicity. Mg2+ did not ameliorate the Pb2+ toxicity on root growth as much as Ca2+ did, although it decreased Pb2+ uptake into roots similarly as Ca2+ did. These results suggest that the protective effect of Ca2+ on Pb2+ toxicity may involve multiple mechanisms including competition at the entry level, and that Pb2+ and Cd2+ may compete with divalent cations for transport into roots of rice plants. 相似文献
19.
为探讨我国亚热带毛竹林(Phyllostachys edulis)生长季的能量平衡关系,利用开路涡度相关法,对2011年毛竹林生长季的能量通量的变化特征进行了研究,并应用能量平衡比率法和线性回归2种方法,分析了能量闭合的特点。结果表明,我国亚热带毛竹林生长季的净辐射总量为1738.2 MJ m–2,显热通量为354.3 MJ m–2,潜热通量为1146.0 MJ m–2,土壤热通量为58.9 MJ m–2,土壤为热汇,显热通量占净辐射的20.4%,潜热通量占65.9%,土壤热通量占3.4%。毛竹林生长季的能量闭合度为0.89,月平均闭合度为0.91,但仍有11%的能量不闭合。可见,毛竹林生长季以潜热能量散失形式为主,各能量分量均以净辐射变化为基础,且日变化基本呈单峰型曲线。 相似文献