首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Notch signalling is critical for haemopoietic stem cell (HSC) self-renewal and survival. The role of Notch signalling has been reported recently in chronic myeloid leukaemia (CML) – a stem cell disease characterized by BCR-ABL tyrosine kinase activation. Therefore, we studied the relationship between BCR-ABL and Notch signalling and assessed the expression patterns of Notch and its downstream target Hes1 in CD34+ stem and progenitor cells from chronic-phase CML patients and bone marrow (BM) from normal subjects (NBM). We found significant upregulation (p<0.05) of Notch1, Notch2 and Hes1 on the most primitive CD34+Thy+ subset of CML CD34+ cells suggesting that active Notch signalling in CML primitive progenitors. In addition, Notch1 was also expressed in distinct lymphoid and myeloid progenitors within the CD34+ population of primary CML cells. To further delineate the possible role and interactions of Notch with BCR-ABL in CD34+ primary cells from chronic-phase CML, we used P-crkl detection as a surrogate assay of BCR-ABL tyrosine kinase activity. Our data revealed that Imatinib (IM) induced BCR-ABL inhibition results in significant (p<0.05) upregulation of Notch activity, assessed by Hes1 expression. Similarly, inhibition of Notch leads to hyperactivation of BCR-ABL. This antagonistic relationship between Notch and BCR-ABL signalling was confirmed in K562 and ALL-SIL cell lines. In K562, we further validated this antagonistic relationship by inhibiting histone deacetylase (HDAC) - an effector pathway of Hes1, using valproic acid (VPA) - a HDAC inhibitor. Finally, we also confirmed the potential antagonism between Notch and BCR/ABL in In Vivo, using publically available GSE-database, by analysing gene expression profile of paired samples from chronic-phase CML patients pre- and post-Imatinib therapy. Thus, we have demonstrated an antagonistic relationship between Notch and BCR-ABL in CML. A combined inhibition of Notch and BCR-ABL may therefore provide superior clinical response over tyrosine-kinase inhibitor monotherapy by targeting both quiescent leukaemic stem cells and differentiated leukaemic cells and hence must be explored.  相似文献   

3.
A reciprocal translocation of the ABL1 gene to the BCR gene results in the expression of the oncogenic BCR-ABL1 fusion protein, which characterizes human chronic myeloid leukemia (CML), a myeloproliferative disorder considered invariably fatal until the introduction of the imatinib family of tyrosine kinase inhibitors (TKI). Nonetheless, insensitivity of CML stem cells to TKI treatment and intrinsic or acquired resistance are still frequent causes for disease persistence and blastic phase progression experienced in patients after initial successful therapies. Here, we investigated a possible role for the MAPK15/ERK8 kinase in BCR-ABL1-dependent autophagy, a key process for oncogene-induced leukemogenesis. In this context, we showed the ability of MAPK15 to physically recruit the oncogene to autophagic vesicles, confirming our hypothesis of a biologically relevant role for this MAP kinase in signal transduction by this oncogene. Indeed, by modeling BCR-ABL1 signaling in HeLa cells and taking advantage of a physiologically relevant model for human CML, i.e. K562 cells, we demonstrated that BCR-ABL1-induced autophagy is mediated by MAPK15 through its ability to interact with LC3-family proteins, in a LIR-dependent manner. Interestingly, we were also able to interfere with BCR-ABL1-induced autophagy by a pharmacological approach aimed at inhibiting MAPK15, opening the possibility of acting on this kinase to affect autophagy and diseases depending on this cellular function. Indeed, to support the feasibility of this approach, we demonstrated that depletion of endogenous MAPK15 expression inhibited BCR-ABL1-dependent cell proliferation, in vitro, and tumor formation, in vivo, therefore providing a novel “druggable” link between BCR-ABL1 and human CML.  相似文献   

4.
Chronic myelogenous leukemia (CML) is a clonal malignancy of hematopoietic stem cells featured with the fusion protein kinase BCR-ABL. To elicit the mechanism underlying BCR-ABL stability, we perform a screen against a panel of deubiquitinating enzymes (DUBs) and find that the ubiquitin-specific protease 7 (USP7) drastically stabilizes the BCR-ABL fusion protein. Further studies show that USP7 interacts with BCR-ABL and blocks its polyubiquitination and degradation. Moreover, USP7 knockdown triggers BCR-ABL degradation and suppresses its downstream signaling transduction. In line with this finding, genetic or chemical inhibition of USP7 leads to BCR-ABL protein degradation, suppresses BCR/ABL signaling, and induces CML cell apoptosis. Furthermore, we find the antimalarial artesunate (ART) significantly inhibits USP7/BCR-ABL interaction, thereby promoting BCR-ABL degradation and inducing CML cell death. This study thus identifies USP7 as a putative Dub of BCR-ABL and provides a rationale in targeting USP7/BCR-ABL for the treatment of CML.Subject terms: Deubiquitylating enzymes, Leukaemia  相似文献   

5.
目的:在应用基因工程技术人工表达获得多表位BCR-ABL融合蛋白的基础上,对该融合抗原在体外诱导对自血病细胞的特异性杀伤效应进行检测,探索慢性髓性自血病(CML)免疫治疗的新途径。方法:从外周血单个核细胞培养树突细胞(DC),以BCR-ABL融合抗原脉冲刺激DC,诱导特异性细胞毒T淋巴细胞(CTL)产生;MTT法检测CTL对白血病靶细胞的特异性杀伤活性。结果:以BCR-ABL融合抗原刺激产生的CTL能特异性抑制b3a2+的靶细胞生长,包括K562细胞(P〈0.01)和HIJA-A2+/b3a2+的CML原代细胞(P〈0.05),而对HIA-A2-或b2a2+靶细胞无明显抑制作用。结论:设计表达的多表位BCR-ABL融合抗原能在体外诱导特异性抗CML免疫反应,抑制b3a2+自血病细胞生长,有望为进一步的体内实验奠定基础。  相似文献   

6.
7.
8.
9.
Chronic myeloid leukemia (CML) is a clonal hematologic malignancy characterized by the BCR-ABL protein. BCR-ABL is a constitutively active tyrosine kinase and plays a critical role in the pathogenesis of CML. Imatinib mesylate, a selective tyrosine kinase inhibitor, is effective in CML, but drug resistance and relapse occur. The coiled-coil (CC) domain located in BCR1–72 mediates BCR-ABL tetramerization, which is essential for the activation of tyrosine kinase and transformation potential of BCR-ABL. CC domain is supposed to be a therapeutic target for CML. We purified a TAT-CC protein competively binding with the endogenous CC domain to reduce BCR-ABL kinase activity. We found that TAT-CC co-located and interacted with BCR-ABL in Ba/F3-p210 and K562 cells. It induced apoptosis and inhibited proliferation in these cells. It increased the sensitivity of these cells to imatinib and reduced the phosphorylation of BCR-ABL, CRKL and STAT5. We confirmed that TAT-CC could attenuate the oncogenicity of Ba/F3-p210 cells and diminish the volume of K562 solid tumor in mice. We conclude targeting the CC may provide a complementary therapy to inhibit BCR-ABL oncogenicity.  相似文献   

10.
11.
12.
Leder K  Foo J  Skaggs B  Gorre M  Sawyers CL  Michor F 《PloS one》2011,6(11):e27682
Chronic myeloid leukemia (CML) is the first human malignancy to be successfully treated with a small molecule inhibitor, imatinib, targeting a mutant oncoprotein (BCR-ABL). Despite its successes, acquired resistance to imatinib leads to reduced drug efficacy and frequent progression of disease. Understanding the characteristics of pre-existing resistant cells is important for evaluating the benefits of first-line combination therapy with second generation inhibitors. However, due to limitations of assay sensitivity, determining the existence and characteristics of resistant cell clones at the start of therapy is difficult. Here we combined a mathematical modeling approach using branching processes with experimental data on the fitness changes (i.e., changes in net reproductive rate) conferred by BCR-ABL kinase domain mutations to investigate the likelihood, composition, and diversity of pre-existing resistance. Furthermore, we studied the impact of these factors on the response to tyrosine kinase inhibitors. Our approach predicts that in most patients, there is at most one resistant clone present at the time of diagnosis of their disease. Interestingly, patients are no more likely to harbor the most aggressive, pan-resistant T315I mutation than any other resistance mutation; however, T315I cells on average establish larger-sized clones at the time of diagnosis. We established that for patients diagnosed late, the relative benefit of combination therapy over monotherapy with imatinib is significant, while this benefit is modest for patients with a typically early diagnosis time. These findings, after pre-clinical validation, will have implications for the clinical management of CML: we recommend that patients with advanced-phase disease be treated with combination therapy with at least two tyrosine kinase inhibitors.  相似文献   

13.
Acquired resistance through genetic mutations is a major obstacle in targeted cancer therapy, but the underlying mechanisms are poorly understood. Here we studied mechanisms of acquired resistance of chronic myeloid leukemia (CML) to tyrosine kinase inhibitors (TKIs) by examining genome-wide gene expression changes in KCL-22 CML cells versus their resistant KCL-22M cells that acquire T315I BCR-ABL mutation following TKI exposure. Although T315I BCR-ABL is sufficient to confer resistance to TKIs in CML cells, surprisingly we found that multiple drug resistance pathways were activated in KCL-22M cells along with reduced expression of a set of myeloid differentiation genes. Forced myeloid differentiation by all-trans-retinoic acid (ATRA) effectively blocked acquisition of BCR-ABL mutations and resistance to the TKIs imatinib, nilotinib or dasatinib in our previously described in vitro models of acquired TKI resistance. ATRA induced robust expression of CD38, a cell surface marker and cellular NADase. High levels of CD38 reduced intracellular nicotinamide adenine dinucleotide (NAD+) levels and blocked acquired resistance by inhibiting the activity of the NAD+-dependent SIRT1 deacetylase that we have previously shown to promote resistance in CML cells by facilitating error-prone DNA damage repair. Consequently, ATRA treatment decreased DNA damage repair and suppressed acquisition of BCR-ABL mutations. This study sheds novel insight into mechanisms underlying acquired resistance in CML, and suggests potential benefit of combining ATRA with TKIs in treating CML, particularly in advanced phases.  相似文献   

14.
Chronic myeloid leukemia (CML) is a cytogenetic disorder resulting from formation of the Philadelphia chromosome (Ph), that is, the t(9;22) chromosomal translocation and the formation of the BCR-ABL1 fusion protein. Tyrosine kinase inhibitors (TKI), such as imatinib and nilotinib, have emerged as leading compounds with which to treat CML. t(9;22) is not restricted to CML, 20-30% of acute lymphoblastic leukemia (ALL) cases also carry the Ph. However, TKIs are not as effective in the treatment of Ph+ ALL as in CML. In this study, the Ph+ cell lines JURL-MK2 and SUP-B15 were used to investigate TKI resistance mechanisms and the sensitization of Ph+ tumor cells to TKI treatment. The annexin V/PI (propidium iodide) assay revealed that nilotinib induced apoptosis in JURL-MK2 cells, but not in SUP-B15 cells. Since there was no mutation in the tyrosine kinase domain of BCR-ABL1 in cell line SUP-B15, the cells were not generally unresponsive to TKI, as evidenced by dephosphorylation of the BCR-ABL1 downstream targets, Crk-like protein (CrkL) and Grb-associated binder-2 (GAB2). Resistance to apoptosis after nilotinib treatment was accompanied by the constitutive and nilotinib unresponsive activation of the phosphoinositide 3-kinase (PI3K) pathway. Treatment of SUP-B15 cells with the dual PI3K/mammalian target of rapamycin (mTOR) inhibitor BEZ235 alone induced apoptosis in a low percentage of cells, while combining nilotinib and BEZ235 led to a synergistic effect. The main role of PI3K/mTOR inhibitor BEZ235 and the reason for apoptosis in the nilotinib-resistant cells was the block of the translational machinery, leading to the rapid downregulation of the anti-apoptotic protein MDM2 (human homolog of the murine double minute-2). These findings highlight MDM2 as a potential therapeutic target to increase TKI-mediated apoptosis and imply that the combination of PI3K/mTOR inhibitor and TKI might form a novel strategy to combat TKI-resistant BCR-ABL1 positive leukemia.  相似文献   

15.
16.
Unbalanced (major route) additional cytogenetic aberrations (ACA) at diagnosis of chronic myeloid leukemia (CML) indicate an increased risk of progression and shorter survival. Moreover, newly arising ACA under imatinib treatment and clonal evolution are considered features of acceleration and define failure of therapy according to the European LeukemiaNet (ELN) recommendations. On the basis of 1151 Philadelphia chromosome positive chronic phase patients of the randomized CML-study IV, we examined the incidence of newly arising ACA under imatinib treatment with regard to the p210BCR-ABL breakpoint variants b2a2 and b3a2. We found a preferential acquisition of unbalanced ACA in patients with b3a2 vs. b2a2 fusion type (ratio: 6.3 vs. 1.6, p = 0.0246) concurring with a faster progress to blast crisis for b3a2 patients (p = 0.0124). ESPL1/Separase, a cysteine endopeptidase, is a key player in chromosomal segregation during mitosis. Separase overexpression and/or hyperactivity has been reported from a wide range of cancers and cause defective mitotic spindles, chromosome missegregation and aneuploidy. We investigated the influence of p210BCR-ABL breakpoint variants and imatinib treatment on expression and proteolytic activity of Separase as measured with a specific fluorogenic assay on CML cell lines (b2a2: KCL-22, BV-173; b3a2: K562, LAMA-84). Despite a drop in Separase protein levels an up to 5.4-fold increase of Separase activity under imatinib treatment was observed exclusively in b3a2 but not in b2a2 cell lines. Mimicking the influence of imatinib on BV-173 and LAMA-84 cells by ESPL1 silencing stimulated Separase proteolytic activity in both b3a2 and b2a2 cell lines. Our data suggest the existence of a fusion type-related feedback mechanism that posttranslationally stimulates Separase proteolytic activity after therapy-induced decreases in Separase protein levels. This could render b3a2 CML cells more prone to aneuploidy and clonal evolution than b2a2 progenitors and may therefore explain the cytogenetic results of CML patients.  相似文献   

17.
Chronic myeloid leukemia disease (CML) found effective therapy by treating patients with tyrosine kinase inhibitors (TKI), which suppress the BCR-ABL1 oncogene activity. However, the majority of patients achieving remission with TKI still have molecular evidences of disease persistence. Various mechanisms have been proposed to explain the disease persistence and recurrence. One of the hypotheses is that the primitive leukemic stem cells (LSCs) can survive in the presence of TKI. Understanding the mechanisms leading to TKI resistance of the LSCs in CML is a critical issue but is limited by availability of cells from patients. We generated induced pluripotent stem cells (iPSCs) derived from CD34+ blood cells isolated from CML patients (CML-iPSCs) as a model for studying LSCs survival in the presence of TKI and the mechanisms supporting TKI resistance. Interestingly, CML-iPSCs resisted to TKI treatment and their survival did not depend on BCR-ABL1, as for primitive LSCs. Induction of hematopoietic differentiation of CML-iPSC clones was reduced compared to normal clones. Hematopoietic progenitors obtained from iPSCs partially recovered TKI sensitivity. Notably, different CML-iPSCs obtained from the same CML patients were heterogeneous, in terms of BCR-ABL1 level and proliferation. Thus, several clones of CML-iPSCs are a powerful model to decipher all the mechanisms leading to LSC survival following TKI therapy and are a promising tool for testing new therapeutic agents.  相似文献   

18.
Gene therapy for chronic myelogenous leukemia.   总被引:10,自引:0,他引:10  
Chronic myelogenous leukemia (CML) is characterized by a balanced translocation that leads to the formation of the the BCR-ABL fusion gene. Although autografts can prolong the life of CML patients, patients relapse owing to malignant cells that persist in the graft and the host. This review discusses various experimental strategies that target the BCR-ABL gene or gene products that are downstream of it. Various strategies have been adopted to block BCR-ABL at the gene, mRNA and protein level. One promising strategy involves the cotransduction of a patient's hematopoietic stem cells (HSCs) with anti-BCR-ABL antisense sequences and a drug resistance gene. This might allow for the elimination of any residual disease in the graft or host by chemotherapy while rendering any drug-resistant, malignant CML HSCs functionally normal.  相似文献   

19.
The Philadelphia translocation commonly observed in chronic myeloid leukaemia (CML) and a proportion of cases of acute leukaemia results in the creation of a chimeric fusion protein, BCR-ABL. The fusion protein exhibits an elevated tyrosine kinase activity as compared to normal ABL. Using a temperature sensitive mutant of p210 BCR-ABL (ts-p210) we find that the primary effect of BCR-ABL expression in an IL-3 dependent cell line is to prolong survival following growth factor withdrawal; only a small proportion of cells remain viable and rapidly evolve to complete growth factor independence. During passage in the presence of IL-3 at the temperature permissive for kinase activity, ts-p210 expressing cultures become dominated by completely growth factor independent cells within 10-30 days. There is also a significant difference between BCR-ABL and IL-3 mediated signalling with respect to the MAP kinase pathway; in contrast to IL-3 stimulation or v-ABL expression, BCR-ABL does not signal ERK 2 (MAP 2 kinase) activation, underlining the apparent inability of BCR-ABL to deliver an immediate proliferative signal in Ba/F3 cells. Our data suggest that growth factor independence does not simply reflect the convergence of BCR-ABL and IL-3 mediated signalling pathways and its development, at least in Ba/F3 cells, requires prolonged exposure to BCR-ABL kinase activity. We suggest that the myeloid expansion characteristic of CML may result from the prolongation of survival of myeloid progenitor cells under conditions of limiting growth factor rather than their uncontrolled proliferation.  相似文献   

20.
Tyrosine kinase inhibitors have revolutionized the treatment of several malignancies, converting lethal diseases in a manageable aspect. Imitanib, a small molecule ABL kinase inhibitor is a highly effective therapy for early phase chronic myeloid leukemia (CML), which has constitutively active ABL kinase activity owing to the over expression of the BCR-ABL fusion protein. But some patients develop imatinib resistance, particularly in the advanced phases of CML.The discovery of resistance mechanisms of imitanib; urge forward the development of second generation drugs. Nilotinib, a second generation drug is more potent inhibitor of BCR-ABL than imatinib. But nilotinib also develops dermatologic events and headache in patients. Large information about BCR-ABL structure and its inhibitors are now available. Based on the pharmacophore modeling approaches, it is possible to decipher the molecular determinants to inhibit BCR-ABL. We conducted a structure based and ligand based study to identify potent natural compounds as BCR-ABL inhibitor. First kinase inhibitors were docked with the receptor (BCR-ABL) and nilotinib was selected as a pharmacophore due its high binding efficiency. Eleven compounds were selected out of 1457 substances which have mutual pharmacopohre features with nilotinib. These eleven compounds were validated and used for docking study to find the drug like molecules. The best molecules from the final set of screening candidates can be evaluated in cell lines and may represent a novel class of BCR-ABL inhibitors.

Abbreviations

CML - Chronic myeloid leukemia, PDGFR - Platelet derived growth factor receptor, TKI - Tyrosine kinase inhibitors.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号