首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
We investigated whether the gene expression of vascular endothelial growth factor (VEGF) and its receptors (VEGFR and neuropilin-1 [NRP-1]) could be specifically regulated during the megakaryocytic differentiation of human thrombopoietin (TPO)-dependent UT-7/TPO cells. Undifferentiated UT-7/TPO cells expressed a functional VEGFR-2, leading to VEGF binding and VEGF165-induced tyrosine phosphorylation, cell proliferation, and apoptosis inhibition. The megakaryocytic differentiation of UT-7/TPO cells on treatment with phorbol myristate acetate (PMA) was accompanied by a marked up-regulation of NRP-1 mRNA and protein expression and by an increase in VEGF-binding activity, which was mainly mediated by VEGFR-2. VEGF165 promoted the formation of complexes containing NRP-1 and VEGFR-2 in undifferentiated UT-7/TPO cells in a dose-dependent manner. Unlike human umbilical vein endothelial cells, PMA-differentiated UT-7/TPO cells exhibited complex formation between NRP-1 and VEGFR-2 even in the absence of VEGF165. These findings suggest that NRP-1-VEGFR-2-complex formation may contribute to effective cellular functions mediated by VEGF165 in megakaryocytic cells.  相似文献   

2.
We previously demonstrated that a non sulfated analogue of heparin, phenylacetate carboxymethyl benzylamide dextran (NaPaC) inhibited angiogenesis. Here, we observed that NaPaC inhibited the VEGF165 binding to both VEGFR2 and NRP-1 and abolished VEGFR2 activity. Further, we explored the effects of NaPaC on VEGF165 interactions with its receptors, VEGFR2 and NRP-1, co-receptor of VEGFR2. Surface plasmon resonance and affinity gel electrophoresis showed that NaPaC interacted directly with VEGF165, VEGFR2 and NRP-1 but not with heparin-independent factor such as VEGF121. NaPaC completely inhibited the heparin binding to VEGF165, NRP-1 and VEGFR2. We found that NaPaC bound to all three molecules, VEGF165, VEGFR2 and NRP-1, but was more effective in inhibiting heparin binding to VEGF165. These results suggested that heparin binding sites of VEGFR2 and NRP-1 were different from those of VEGF165.  相似文献   

3.
Neuropilin-1 (NRP-1), a non-tyrosine kinase receptor of vascular endothelial growth factor-165 (VEGF165), was found expressed on endothelial and some tumor cells. Since its overexpression is correlated with tumor angiogenesis and progression, the targeting of NRP-1 could be a potential anti-cancer strategy. To explore this hypothesis, we identified a peptide inhibiting the VEGF165 binding to NRP-1 and we tested whether it was able to inhibit tumor growth and angiogenesis. To prove the target of peptide action, we assessed its effects on binding of radiolabeled VEGF165 to recombinant receptors and to cultured cells expressing only VEGFR-2 (KDR) or NRP-1. Antiangiogenic activity of the peptide was tested in vitro in tubulogenesis assays and in vivo in nude mice xenotransplanted in fat-pad with breast cancer MDA-MB-231 cells. Tumor volumes, vascularity and proliferation indices were determined. The selected peptide, ATWLPPR, inhibited the VEGF165 binding to NRP-1 but not to tyrosine kinase receptors, VEGFR-1 (flt-1) and KDR; nor did it bind to heparin. It diminished the VEGF-induced human umbilical vein endothelial cell proliferation and tubular formation on Matrigel and in co-culture with fibroblasts. Administration of ATWLPPR to nude mice inhibited the growth of MDA-MB-231 xenografts, and reduced blood vessel density and endothelial cell area but did not alter the proliferation indices of the tumor. In conclusion, ATWLPPR, a previously identified KDR-interacting peptide, was shown to inhibit the VEGF165 interactions with NRP-1 but not with KDR and to decrease the tumor angiogenesis and growth, thus validating, in vivo, NRP-1 as a possible target for antiangiogenic and antitumor agents.  相似文献   

4.
Neuropilin-1 (NRP-1) is a co-receptor for vascular endothelial growth factor (VEGF). During neovascularization, vascular smooth muscle cells (VSMCs) and pericytes modulate the function of endothelial cells. Factors that mediate NRP-1 in human VSMCs (hVSMCs) remain to be elucidated. We studied various angiogenic cytokines to identify factors that increase NRP-1 expression in hVSMCs. Treatment of hVSMCs with basic fibroblast growth factor (b-FGF) induced expressions of NRP-1 mRNA and protein whereas epidermal growth factor, insulin-like growth factor-1, and interleukin-1beta did not. b-FGF induced phosphorylation of Erk-1/2 and JNK. MEK1/2 and nuclear factor kappa B (NF-kappaB) inhibitors (U0126 and TLCK, respectively) blocked the ability of b-FGF to induce NRP-1 mRNA expression, but inhibition of JNK (SP600125) or PI3-kinase activity (wortmannin) did not. Further, the increase in NRP-1 expression by b-FGF enhanced hVSMCs migration in response to VEGF(165). This effect was dependent on the binding of VEGF(165) to VEGFR-2, as blocking antibodies to VEGFR-2, but not VEGFR-1, inhibited VEGF(165)-induced migration. In conclusion, b-FGF increased NRP-1 expression in hVSMCs that in turn enhance the effect of VEGF(165) on cell migration. The enhanced migration of hVSMCs was mediated through binding of VEGF(165) to both NRP-1 and VEGFR-2, as inhibition of VEGFR-2 on these cells blocked the effect of VEGF-mediated cell migration.  相似文献   

5.
Fibroblast growth factor 2 (FGF2) and vascular endothelial growth factor 165 (VEGF165) are potent pro-angiogenic growth factors that play a pivotal role in tumor angiogenesis. The activity of these growth factors is regulated by heparan sulfate (HS), which is essential for the formation of FGF2/FGF receptor (FGFR) and VEGF165/VEGF receptor signaling complexes. However, the structural characteristics of HS that determine activation or inhibition of such complexes are only partially defined. Here we show that ovarian tumor endothelium displays high levels of HS sequences that harbor glucosamine 6-O-sulfates when compared with normal ovarian vasculature where these sequences are also detected in perivascular area. Reduced HS 6-O-sulfotransferase 1 (HS6ST-1) or 6-O-sulfotransferase 2 (HS6ST-2) expression in endothelial cells impacts upon the prevalence of HS 6-O-sulfate moieties in HS sequences, which consist of repeating short, highly sulfated S domains interspersed by transitional N-acetylated/N-sulfated domains. 1–40% reduction in 6-O-sulfates significantly compromises FGF2- and VEGF165-induced endothelial cell sprouting and tube formation in vitro and FGF2-dependent angiogenesis in vivo. Moreover, HS on wild-type neighboring endothelial or smooth muscle cells fails to restore endothelial cell sprouting and tube formation. The affinity of FGF2 for HS with reduced 6-O-sulfation is preserved, although FGFR1 activation is inhibited correlating with reduced receptor internalization. These data show that 6-O-sulfate moieties in endothelial HS are of major importance in regulating FGF2- and VEGF165-dependent endothelial cell functions in vitro and in vivo and highlight HS6ST-1 and HS6ST-2 as potential targets of novel antiangiogenic agents.  相似文献   

6.
Angiogenesis plays an important role in bone development and postnatal bone fracture repair. Vascular endothelial growth factor (VEGF) and vascular endothelial growth factor receptors (VEGFRs) are primarily involved in angiogenesis. This study investigated the expression of VEGF isoforms, VEGFR-1, and VEGFR-2 during the osteoblastic differentiation of cultured human periosteal-derived cells. In addition, the effect of exogenous VEGF on the osteoblastic differentiation of cultured human periosteal-derived cells was also examined. The expression of the VEGF isoforms (VEGF121, VEGF165, VEGF189, and VEGF206), VEGFR-1, and VEGFR-2 was observed in the periosteal-derived cells. Administration of KRN633, a VEGFR-1 and VEGFR-2 inhibitor, decreased the alkaline phosphatase (ALP) activity during the osteoblastic differentiation of cultured human periosteal-derived cells. However, the administration of VEGFR2 Kinase Inhibitor IV, a VEGFR-2 inhibitor, did not affect the ALP activity. The addition of recombinant human VEGF165 elevated the ALP activity and increased the calcium content in the periosteal-derived cells. Treating the periosteal-derived cells with recombinant human VEGF165 resulted in an increase in Runx2 transactivation in the periosteal-derived cells. These results suggest that exogenous VEGF stimulates the osteoblastic differentiation of cultured human periosteal-derived cells and VEGF might act as an autocrine growth factor for the osteoblastic differentiation of cultured human periosteal-derived cells.  相似文献   

7.
We previously demonstrated that a non sulfated analogue of heparin, phenylacetate carboxymethyl benzylamide dextran (NaPaC) inhibited angiogenesis. Here, we observed that NaPaC inhibited the VEGF165 binding to both VEGFR2 and NRP-1 and abolished VEGFR2 activity. Further, we explored the effects of NaPaC on VEGF165 interactions with its receptors, VEGFR2 and NRP-1, co-receptor of VEGFR2. Surface plasmon resonance and affinity gel electrophoresis showed that NaPaC interacted directly with VEGF165, VEGFR2 and NRP-1 but not with heparin-independent factor such as VEGF121. NaPaC completely inhibited the heparin binding to VEGF165, NRP-1 and VEGFR2. We found that NaPaC bound to all three molecules, VEGF165, VEGFR2 and NRP-1, but was more effective in inhibiting heparin binding to VEGF165. These results suggested that heparin binding sites of VEGFR2 and NRP-1 were different from those of VEGF165.  相似文献   

8.
Neuropilin-1 (NRP-1) is present on the cell surface of endothelial cells, or as a soluble truncated variant. Membrane NRP-1 is proposed to enhance angiogenesis by promoting the formation of a signaling complex between vascular endothelial growth factor-A(165) (VEGF-A(165)), VEGF receptor-2 (VEGFR-2) and heparan sulfate, whereas the soluble NRP-1 is thought to act as an antagonist of signaling complex formation. We have analyzed the angiogenic potential of a chimera comprising the entire extracellular NRP-1 region dimerized through an Fc IgG domain and a monomeric truncated NRP-1 variant. Both NRP-1 proteins stimulated tubular morphogenesis and cell migration in HDMECs and HUVECs. Fc rNRP-1 was able to induce VEGFR-2 phosphorylation and expression of the VEGFR-2 specific target, regulator of calcineurin-1 (RCAN1.4). siRNA mediated gene silencing of VEGFR-2 revealed that VEGFR-2 was required for Fc rNRP-1 mediated activation of the intracellular signaling proteins PLC-γ, AKT, and MAPK and tubular morphogenesis. The stimulatory activity was independent of VEGF-A(165). This was evidenced by depleting the cell culture of exogenous VEGF-A(165), and using instead for routine culture VEGF-A(121), which does not interact with NRP-1, and by the inability of VEGF-A sequestering antibodies to inhibit the angiogenic activity of the NRP proteins. Analysis of angiogenesis over a period of 6 days in an in vitro fibroblast/endothelial co-culture model revealed that Fc rNRP-1 could induce endothelial cell tubular morphogenesis. Thus, we conclude that soluble Fc rNRP-1 is a VEGF-A(165)-independent agonist of VEGFR-2 and stimulates angiogenesis in endothelial cells.  相似文献   

9.
We previously reported that vascular endothelial growth factor (VEGF)-A(165) inflammatory effect is mediated by acute platelet-activating factor synthesis from endothelial cells upon the activation of VEGF receptor-2 (VEGFR-2) and its coreceptor, neuropilin-1 (NRP-1). In addition, VEGF-A(165) promotes the release of other endothelial mediators including nitric oxide and prostacyclin (PGI(2)). However, it is unknown whether VEGF-A(165) is mediating PGI(2) synthesis through VEGF receptor-1 (VEGFR-1) and/or VEGF receptor-2 (VEGFR-2) activation and whether the coreceptor NRP-1 potentiates VEGF-A(165) activity. In this study, PGI(2) synthesis in bovine aortic endothelial cells (BAEC) was assessed by quantifying its stable metabolite (6-keto prostaglandin F(1alpha), 6-keto PGF(1alpha)) by enzyme-linked immunosorbent assay. Treatment of BAEC with VEGF analogs, VEGF-A(165) (VEGFR-1, VEGFR-2 and NRP-1 agonist) and VEGF-A(121) (VEGFR-1 and VEGFR-2 agonist) (up to 10(-9) m), increased PGI(2) synthesis by 70- and 40-fold within 15 min. Treatment with VEGFR-1 (placental growth factor and VEGF-B) or VEGFR-2 (VEGF-C) agonist did not increase PGI(2) synthesis. The combination of VEGFR-1 and VEGFR-2 agonists did not increase PGI(2) release. Pretreatment with a VEGFR-2 inhibitor abrogated PGI(2) release mediated by VEGF-A(165) and VEGF-A(121), and pretreatment of BAEC with antisense oligomers targeting VEGFR-1 or VEGFR-2 mRNA reduced PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121) up to 79%. In summary, our data demonstrate that the activation of VEGFR-1 and VEGFR-2 heterodimer (VEGFR-1/R-2) is essential for PGI(2) synthesis mediated by VEGF-A(165) and VEGF-A(121), which cannot be reproduced by the parallel activation of VEGFR-1 and VEGFR-2 homodimers with corresponding agonists. In addition, the binding of VEGF-A(165) to NRP-1 potentiates its capacity to promote PGI(2) synthesis.  相似文献   

10.
C-reactive protein (CRP) is associated with cardiovascular disease. However, its biological functions for the vascular system are largely unknown. The objective of this study was to determine whether CRP could affect endothelial cell proliferation and expression of VEGF receptors (VEGFRs) and/or neuropilins. Human coronary artery endothelial cells (HCAECs) treated with CRP showed a significant reduction of mRNA levels of VEGFR-2, VEGFR-3, NRP-1, and NRP-2 by 34%, 63%, 41%, and 43%, respectively, as compared to untreated control cells (p < 0.05) by real-time PCR analysis. In addition, VEGF165-induced cell proliferation was determined by [3H]thymidine incorporation and MTS assay as well as capillary-like tube formation on Matrigel. HCAECs pretreated with CRP significantly decreased VEGF165-induced [3H]thymidine incorporation by 73%, MTS absorbance by 44%, and capillary-like tube formation by 54% as compared to CRP-untreated cells (p < 0.05). These data demonstrate that CRP significantly attenuates VEGF165-induced HCAEC proliferation and capillary-like tube formation through downregulation of expression of VEGFRs and NRPs. This study suggests a new molecular mechanism underlying the adverse effect of CRP on the vascular system.  相似文献   

11.
Vascular endothelial growth factor (VEGF) and its receptor VEGFR-2 play important roles in mitogenesis and chemotaxis of endothelial cells. In normal human skin, VEGF is expressed and secreted by epidermal keratinocytes. Emerging data suggest that keratinocyte-derived VEGF targets other cell types besides the dermal endothelial cells. We have recently showed that keratinocytes from human normal skin expressed all five known VEGF receptors and co-receptors (neuropilin 1 and 2). To define the functional significance of VEGFR-2 in epidermis, we examined its role in a keratinocyte cell line, HaCaT cells, in response to VEGF treatment. Expression of VEGFR-2 on HaCaT cells was confirmed at both RNA and protein levels and was regulated by VEGF165 treatment. Treatment of HaCaT cells with VEGF165 induced tyrosine-autophosphorylation of VEGFR-2 and phosphorylation of PLC-gamma and p44/42 MAPK in a time-dependent manner. Preincubation with a neutralizing antibody for VEGFR-2 (MAB3571) completely abrogated these phosphorylation effects. Furthermore, VEGF165 stimulated proliferation and migration of HaCaT cells, and this effect was significantly blocked by a pretreatment with MAB3571. Neutralizing VEGFR-2 in HaCaT cells increased cell adhesion during culture. Our results suggest that VEGFR-2 expressed on HaCaT cells plays a crucial role in VEGF-mediated regulation of cell activity.  相似文献   

12.
Vascular endothelial growth factor (VEGF) is a family of glycoproteins with potent angiogenic activity. We reported previously that heparin has an affinity for VEGF165, the major isoform of VEGF, whereas 2-O-desulfated heparin and 6-O-desulfated heparin have weak but significant affinity (Ashikari-Hada, S., Habuchi, H., Kariya, Y., Itoh, N., Reddi, A. H., and Kimata, K. (2004) J. Biol. Chem. 279, 12346-12354). In this study, we first examined the effect of heparin and modified heparins (completely desulfated N-sulfated heparin, 2-O-desulfated heparin, and 6-O-desulfated heparin) on VEGF165-dependent mitogenic activity and tube formation on type I collagen gels of human umbilical vein endothelial cells. Both were enhanced by heparin, but not by modified heparins, suggesting that both the 2-O-sulfate group of hexuronic acid and the 6-O-sulfation group of N-sulfoglucosamine in heparin/heparan sulfate are necessary for VEGF165 activity. We then examined the activation of VEGF receptor (VEGFR) to understand the mechanism. We have made several new findings; 1) heparin yielded a 1.7-fold enhancement of VEGF165-induced phosphorylation of VEGFR-2; 2) depletion of cell surface heparan sulfate by heparinase/heparitinase treatment and preferential reduction of trisulfated disaccharide units of cell surface HS by sodium chlorate treatment resulted in the reduction of such phosphorylation, suggesting the involvement of a heparin-like domain in the phosphorylation of VEGFR-2; and 3) VEGF121, an isoform without the exon 7-encoded region, which has no capacity to bind to heparin, did not show these effects. It is therefore likely that a heparin-like domain of heparan sulfate/heparin forms a complex with VEGF165 and VEGFR-2 via the exon 7-encoded region, thereby enhancing VEGF165-dependent signaling.  相似文献   

13.

Background

Heparan sulfate (HS) is an important regulator of the assembly and activity of various angiogenic signalling complexes. However, the significance of precisely defined HS structures in regulating cytokine-dependent angiogenic cellular functions and signalling through receptors regulating angiogenic responses remains unclear. Understanding such structure-activity relationships is important for the rational design of HS fragments that inhibit HS-dependent angiogenic signalling complexes.

Methodology/Principal Findings

We synthesized a series of HS oligosaccharides ranging from 7 to 12 saccharide residues that contained a repeating disaccharide unit consisting of iduronate 2-O-sulfate linked to glucosamine with or without N-sulfate. The ability of oligosaccharides to compete with HS for FGF2 and VEGF165 binding significantly increased with oligosaccharide length and sulfation. Correspondingly, the inhibitory potential of oligosaccharides against FGF2- and VEGF165-induced endothelial cell responses was greater in longer oligosaccharide species that were comprised of disaccharides bearing both 2-O- and N-sulfation (2SNS). FGF2- and VEGF165-induced endothelial cell migration were inhibited by longer 2SNS oligosaccharide species with 2SNS dodecasaccharide activity being comparable to that of receptor tyrosine kinase inhibitors targeting FGFR or VEGFR-2. Moreover, the 2SNS dodecasaccharide ablated FGF2- or VEGF165-induced phosphorylation of FAK and assembly of F-actin in peripheral lamellipodia-like structures. In contrast, FGF2-induced endothelial cell proliferation was only moderately inhibited by longer 2SNS oligosaccharides. Inhibition of FGF2- and VEGF165-dependent endothelial tube formation strongly correlated with oligosaccharide length and sulfation with 10-mer and 12-mer 2SNS oligosaccharides being the most potent species. FGF2- and VEGF165-induced activation of MAPK pathway was inhibited by biologically active oligosaccharides correlating with the specific phosphorylation events in FRS2 and VEGFR-2, respectively.

Conclusion/Significance

These results demonstrate structure-function relationships for synthetic HS saccharides that suppress endothelial cell migration, tube formation and signalling induced by key angiogenic cytokines.  相似文献   

14.
Neuropilin-1 (NRP-1) has been found to be expressed by endothelial cells and tumor cells as an isoform-specific receptor for vascular permeability factor/vascular endothelial growth factor (VEGF). Previous studies were mainly focused on the extracellular domain of NRP-1 that can bind to VEGF165 and, thus, enables NRP-1 to act as a co-receptor for VEGF165, which enhances its binding to VEGFR-2 and its bioactivity. However, the exact functional roles and related signaling mechanisms of NRP-1 in angiogenesis are not well understood. In this study we constructed a chimeric receptor, EGNP-1, by fusing the extracellular domain of epidermal growth factor receptor to the transmembrane and intracellular domains of NRP-1 and transduced it into HUVECs with a retroviral expression vector. We observed that NRP-1/EGNP-1 mediates ligand-stimulated migration of human umbilical vein endothelial cells (HUVECs) but not proliferation. Our results show that NRP-1 alone can mediate HUVEC migration through its intracellular domain, and its C-terminal three amino acids (SEA-COOH) are essential for the process. We demonstrate that phosphatidylinositol 3-kinase inhibitor Ly294002 and the p85 dominant negative mutant can block NRP-1-mediated HUVEC migration. NRP-1-mediated migration can be significantly reduced by overexpression of the dominant negative mutant of RhoA (RhoA-19N). In addition, Gq family proteins and Gbetagamma subunits are also required for NRP-1-mediated HUVEC migration. These results show for the first time that NRP-1 can independently promote cell signaling in endothelial cells and also demonstrate the importance of last three amino acids of NRP-1 for its function.  相似文献   

15.
VEGF is fundamental in the development and maintenance of the vasculature. VEGF(165) signaling through VEGF receptor (VEGFR)-2/kinase insert domain receptor (KDR) is a highly regulated process involving the formation of a tertiary complex with glypican (GYP)-1 and neuropilin (NRP)-1. Both VEGF and VEGFR-2 expression are reduced in emphysematous lungs; however, the mechanism of regulation of VEGF(165) signaling through the VEGFR-2 complex in response to cigarette smoke exposure in vivo, and in smokers with and without chronic obstructive pulmonary disease (COPD), is still unknown. We hypothesized that cigarette smoke exposure disrupts the VEGF(165)-VEGFR-2 complex, a potential mechanism in the pathogenesis of emphysema. We show that cigarette smoke exposure reduces NRP-1 and GYP-1 as well as VEGF and VEGFR-2 levels in rat lungs and that VEGF, VEGFR-2, GYP-1, and NRP-1 expression in the lungs of both smokers and patients with COPD are also reduced compared with nonsmokers. Moreover, our data suggest that specific inhibition of VEGFR-2 alone with NVP-AAD777 would appear not to result in emphysema in the adult rat lung. As both VEGF(165) and VEGFR-2 expression are reduced in emphysematous lungs, decreased GYP-1 and NRP-1 expression may yet further disrupt VEGF(165)-VEGFR-2 signaling. Whether or not this by itself is critical for inducing endothelial cell apoptosis and decreased vascularization of the lung seen in emphysema patients is still unclear at present. However, targeted therapies to restore VEGF(165)-VEGFR-2 complex may promote endothelial cell survival and help to ameliorate emphysema.  相似文献   

16.
Vascular endothelial growth factor (VEGF) acts as a hierarchically high switch of the angiogenic cascade by interacting with its high affinity VEGF receptors and with neuropilin co-receptors. VEGF(165) binds to both Neuropilin-1 (NP-1) and VEGFR-2, and it is believed that ligand binding forms an extracellular bridge between both molecules. This leads to complex formation, thereby enhancing VEGFR-2 phosphorylation and subsequent signaling. We found that inhibition of VEGF receptor (VEGFR) phosphorylation reduced complex formation between NP-1 and VEGFR-2, suggesting a functional role of the cytoplasmic domain of VEGFR-2 for complex formation. Correspondingly, deleting the PDZ-binding domain of NP-1 decreased complex formation, indicating that extracellular VEGF(165) binding is not sufficient for VEGFR-2-NP-1 interaction. Synectin is an NP-1 PDZ-binding domain-interacting molecule. Experiments in Synectin-deficient endothelial cells revealed reduced VEGFR-2-NP-1 complex formation, suggesting a role for Synectin in VEGFR-2-NP-1 signaling. Taken together, the experiments have identified a novel mechanism of NP-1 interaction with VEGFR-2, which involves the cytoplasmic domain of NP-1.  相似文献   

17.
Neuropilin-1 (NRP-1), one of the most important co-receptors of vascular endothelial growth factor-A (VEGF-A), increases its angiogenic action in several chronic diseases including cancer by increasing the activity of associated tyrosine kinase receptors, VEGFR1 and VEGFR2. Binding of VEGF-A to NRP-1 plays a critical role in pathological angiogenesis and tumor progression. Today, targeting this interaction is a validated approach to fight against angiogenesis-dependent diseases. Only anti-NRP-1 antibodies, peptide and peptidomimetic drug-candidates or hits have been developed thus far. In order to identify potent orally active small organic molecules various experimental and in silico approaches can be used. Here we report, novel promising small drug-like molecules disrupting the binding of VEGF-A165 to NRP-1. We carried out structure-based virtual screening experiments using the ChemBridge compound collection on the VEGF-A165 binding pocket of NRP-1. After docking and two rounds of similarity search computations, we identified 4 compounds that inhibit the biotinylated VEGF-A165 binding to recombinant NRP-1 with Ki of about 10 μM. These compounds contain a common chlorobenzyloxy alkyloxy halogenobenzyl amine scaffold that can serve as a base for further development of new NRP-1 inhibitors.  相似文献   

18.
Summary VEGF (vascular endothelial growth factor) overproduction has been identified as a major factor underlying pathological angiogenesis in vivo, including such conditions as psoriasis, macular degeneration, and tumor proliferation. Endothelial cell tyrosine kinase receptors, KDR and Flt-1, have been implicated in VEGF responses including cellular migration, proliferation, and modulation of vascular permeability. Therefore, agents that limit VEGF-cellular interaction are likely therapeutic candidates for VEGF-mediated disease states (particularly agents blocking activity of VEGF165, the most frequently occurring VEGF isoform). To that end, a nuclease-resistant, VEGF165-specific aptamer NX1838 (2′-fluoropyrimidine, RNA-based oligonucleotide/40-kDa-PEG) was developed. We have assessed NX1838 inhibition of a variety of cellular events associated with VEGF, including cellular binding, signal transduction, calcium mobilization, and induction of cellular proliferation. Our data indicate that NX1838 inhibits binding of VEGF to HUVECs (human umbilical vein endothelial cells) and dose-dependently prevents VEGF-mediated phosphorylation of KDR and PLCγ, calcium flux, and ultimately VEGF-induced cell proliferation. NX1838-inhibition of VEGF-mediated cellular events was comparable to that observed with anti-VEGF monoclonal antibody, but was ineffective as an inhibitor of VEGF121-induced HUVEC proliferation. These findings, coupled with nuclease stability of the molecule, suggest that NX1838 may provide therapeutic utility in vivo.  相似文献   

19.
Vascular endothelial growth factor (VEGF) is produced either as a pro-angiogenic or anti-angiogenic protein depending upon splice site choice in the terminal, eighth exon. Proximal splice site selection (PSS) in exon 8 generates pro-angiogenic isoforms such as VEGF165, and distal splice site selection (DSS) results in anti-angiogenic isoforms such as VEGF165b. Cellular decisions on splice site selection depend upon the activity of RNA-binding splice factors, such as ASF/SF2, which have previously been shown to regulate VEGF splice site choice. To determine the mechanism by which the pro-angiogenic splice site choice is mediated, we investigated the effect of inhibition of ASF/SF2 phosphorylation by SR protein kinases (SRPK1/2) on splice site choice in epithelial cells and in in vivo angiogenesis models. Epithelial cells treated with insulin-like growth factor-1 (IGF-1) increased PSS and produced more VEGF165 and less VEGF165b. This down-regulation of DSS and increased PSS was blocked by protein kinase C inhibition and SRPK1/2 inhibition. IGF-1 treatment resulted in nuclear localization of ASF/SF2, which was blocked by SPRK1/2 inhibition. Pull-down assay and RNA immunoprecipitation using VEGF mRNA sequences identified an 11-nucleotide sequence required for ASF/SF2 binding. Injection of an SRPK1/2 inhibitor reduced angiogenesis in a mouse model of retinal neovascularization, suggesting that regulation of alternative splicing could be a potential therapeutic strategy in angiogenic pathologies.  相似文献   

20.
Vascular endothelial growth factor VEGF (VEGF-A or VEGF165) is a potent angiogenic factor that also signals neuroprotection through activation of its cognate receptor VEGFR-2. In this capacity, VEGF signaling can rescue neurons from the damage induced by stressful stimuli many of which elicit oxidative stress. However, the regulatory role that VEGFR-2 plays in providing neuroprotection remains elusive. Therefore, we investigated the effects of VEGFR-2 inhibition on primary cultures of mature hippocampal neurons undergoing nutritional stress. We found that neurons cultured under nutritional stress had increased expression of VEGF and its receptors, VEGFR-1, VEGFR-2, and NP-1, as well as enhanced levels of VEGFR-2 phosphorylation. These neurons also showed increased activation of the prosurvival pathways for MEK/ERK1/2 and PI3K/Akt, enhanced phosphorylation (inactivation) of the proapoptotic BAD, and higher levels of the antiapoptotic protein Bcl-xL, all of which were augmented by treatments with exogenous VEGF and blocked by VEGFR-2 inhibition. The blockade of VEGFR-2 function also elicited a cytotoxicity that was accompanied by caspase-3 activation, induction of hemeoxygenase-1 (HO-1), oxidative stress, and a collapse in the mitochondrial membrane potential (ΔΨm). Knockdown of VEGFR-2 by siRNA generated a similar pattern of redox change and mitochondrial impairment. Pretreatments with VEGF, VEGF-B, or the antioxidant N-acetylcysteine (NAC) rescued SU1498 or siRNA-treated neurons from the mitochondrial dysfunction and oxidative stress induced by VEGFR-2 inhibition in a timely fashion. These findings suggested that VEGF or VEGF-B can provide neuroprotection by signaling through an alternate VEGF receptor. Together, our findings suggest that VEGF signaling through VEGFR-2 plays a critical regulatory role in protecting stressed hippocampal neurons from the damaging effects of an oxidative insult. These findings also implicate VEGFR-1 or NP-1 as compensatory receptors that mediate neuroprotection when VEGFR-2 function is blocked.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号