首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Phytochromes are multidomain photoswitches that drive light perception in plants and microorganisms by coupling photoreversible isomerization of their bilin chromophore to various signaling cascades. How changes in bilin conformation affect output by these photoreceptors remains poorly resolved and might include several species-specific routes. Here, we present detailed three-dimensional models of the photosensing module and a picture of an entire dimeric photoreceptor through structural analysis of the Deinococcus radiodurans phytochrome BphP assembled with biliverdin (BV). A 1.16-Å resolution crystal structure of the bilin-binding pocket in the dark-adapted red light-absorbing state illuminated the intricate network of bilin/protein/water interactions and confirmed the protonation and ZZZssa conformation of BV. Structural and spectroscopic comparisons with the photochemically compromised D207A mutant revealed that substitutions of Asp-207 allow inclusion of cyclic porphyrins in addition to BV. A crystal structure of the entire photosensing module showed a head-to-head, twisted dimeric arrangement with bowed helical spines and a hairpin protrusion connecting the cGMP phosphodiesterase/adenylyl cyclase/FhlA (GAF) and phytochrome-specific (PHY) domains. A key conserved hairpin feature is its anti-parallel, two β-strand stem, which we show by mutagenesis to be critical for BphP photochemistry. Comparisons of single particle electron microscopic images of the full-length BphP dimer in the red light-absorbing state and the photoactivated far-red light-absorbing state revealed a large scale reorientation of the PHY domain relative to the GAF domain, which alters the position of the downstream histidine kinase output module. Together, our data support a toggle model whereby bilin photoisomerization alters GAF/PHY domain interactions through conformational modification of the hairpin, which regulates signaling by impacting the relationship between sister output modules.  相似文献   

2.
KdpD/KdpE two‐component signaling system regulates expression of a high affinity potassium transporter responsible for potassium homeostasis. The C‐terminal module of KdpD consists of a GAF domain linked to a histidine kinase domain. Whereas certain GAF domains act as regulators by binding cyclic nucleotides, the role of the juxtamembrane GAF domain in KdpD is unknown. We report the high‐resolution crystal structure of KdpD GAF domain (KdpDG) consisting of five α‐helices, four β‐sheets and two large loops. KdpDG forms a symmetry‐related dimer, wherein parallelly arranged monomers contribute to a four‐helix bundle at the dimer‐interface, SAXS analysis of KdpD C‐terminal module reveals an elongated structure that is a dimer in solution. Substitution of conserved residues with various residues that disrupt the dimer interface produce a range of effects on gene expression demonstrating the importance of the interface in inactive to active transitions during signaling. Comparison of ligand binding site of the classic cyclic nucleotide‐binding GAF domains to KdpDG reveals structural differences arising from naturally occurring substitutions in primary sequence of KdpDG that modifies the canonical NKFDE sequence motif required for cyclic nucleotide binding. Together these results suggest a structural role for KdpDG in dimerization and transmission of signal to the kinase domain.  相似文献   

3.
Progress in understanding primary mechanisms of light reception in photoregulatory processes is achieved through discovering new biological photoreceptors, chiefly the regulatory sensors of blue/UV-A light. Among them are LOV domain-containing proteins and DNA photolyase-like cryptochromes, which constitute two widespread groups of photoreceptors that use flavin cofactors (FMN or FAD) as the photoactive chromophores. Bacterial LOV domain modules are connected in photoreceptor proteins with regulatory domains such as diguanylate cyclases/phosphodiesterases, histidine kinases, and DNA-binding domains that are activated by photoconversions of flavin. Identification of red/far-red light sensors in chemotrophic bacteria (bacteriophytochromes) and crystal structures of their photosensor module with bilin chromophore are significant for decoding the mechanisms of phytochrome receptor photoconversion and early step mechanisms of phytochrome-mediated signaling. The only UV-B regulatory photon sensor, UVR8, recently identified in plants, unlike other photoreceptors functions without a prosthetic chromophore: tryptophans of the unique UVR8 protein structure provide a “UV-B antenna”. Our analysis of new data on photosensory properties of the identified photoreceptors in conjunction with their structure opens insight on the influence of the molecular microenvironment on light-induced chromophore reactions, the mechanisms by which the photoactivated chromophores trigger conformational changes in the surrounding protein structure, and structural bases of propagation of these changes to the interacting effector domains/proteins.  相似文献   

4.
Cho MH  Yoo Y  Bhoo SH  Lee SW 《The protein journal》2011,30(2):124-131
Phytochrome-like proteins have been recently identified in prokaryotes but their features and functions are not clear. We cloned a gene encoding the phytochrome-like protein (XoBphP) in a pathogenic bacteria, Xanthomonas oryzae pv. oryzae (Xoo) and investigated characteristics of the protein using a recombinant XoBphP. The N-terminal region of XoBphP containing the PAS/GAF/PHY domains is highly similar to most bacteriophytochromes, but Cys4, corresponding to Cys24 of DrBphP, isn’t involved in chromophore attachment. Recombinant XoBphP could bind a bilin molecule and a differential spectrum from Pr/Pfr shows that XoBphP has similar characteristics of known bacteriophytochromes with shifted absorption maxima of 683 and 757 nm for the Pr and Pfr forms. Unlike other bacteriophytochromes, XoBphP has no histidine kinase domain at C-terminus. The domain was predicted from amino-acid 279 to 342 with less significance than the required threshold. This result suggests that XoBphP probably has different signal transduction mechanisms for its intracellular function.  相似文献   

5.
Phytochromes and bacteriophytochromes in plants and some species of bacteria, respectively, are photoreceptors that bind linear tetrapyrroles and can respond to red and far-red light signals in a reversible manner. A related but distinct photoreceptor candidate, CikA (denoted ScCikA), has been reported to reset the circadian clock in the cyanobacterium Synechococcus elongatus PCC 7942 after a dark pulse. However, recent studies have indicated that ScCikA does not function as a photoreceptor but as a redox sensor. Moreover, the Cys residue that covalently ligates the chromophore in phytochromes is not conserved in the ScCikA protein. On the other hand, the CikA homolog in Synechocystis sp. PCC 6803 (Slr1969, denoted SyCikA) retains this conserved Cys residue. In our present study, we have isolated the putative chromophore-binding GAF domain of SyCikA from Synechocystis and phycocyanobilin-producing Escherichia coli. Absorption spectra of both preparations showed two peaks in the UV and violet regions. Irradiation of these proteins with violet light yielded a broad peak in a yellow region at the expense of the peaks in the UV and violet regions. Interestingly, successive irradiation with yellow light did not revert these absorption spectra but a partial dark reversion to the original form was detected. These results suggest that SyCikA may function as a violet light sensor in Synechocystis.  相似文献   

6.
TRF1 and TRF2 are key components of vertebrate telomeres. They bind to double-stranded telomeric DNA as homodimers. Dimerization involves the TRF homology (TRFH) domain, which also mediates interactions with other telomeric proteins. The crystal structures of the dimerization domains from human TRF1 and TRF2 were determined at 2.9 and 2.2 A resolution, respectively. Despite a modest sequence identity, the two TRFH domains have the same entirely alpha-helical architecture, resembling a twisted horseshoe. The dimerization interfaces feature unique interactions that prevent heterodimerization. Mutational analysis of TRF1 corroborates the structural data and underscores the importance of the TRFH domain in dimerization, DNA binding, and telomere localization. A possible structural homology between the TRFH domain of fission yeast telomeric protein Taz1 with those of the vertebrate TRFs is suggested.  相似文献   

7.
DevS is the sensor of the DevS-DevR two-component regulatory system of Mycobacterium tuberculosis. This system is thought to be responsible for initiating entrance of this bacterium into the nonreplicating persistent state in response to NO and anaerobiosis. DevS is modular in nature and consists of two N-terminal GAF domains and C-terminal histidine kinase and ATPase domains. The first GAF domain (GAF A) binds heme, and this cofactor is thought to be responsible for sensing environmental stimuli, but the function of the second GAF domain (GAF B) is unknown. Here we report the RR characterization of full-length DevS (FL DevS) as well as truncated proteins consisting of the single GAF A domain (GAF A DevS) and both GAF domains (GAF A/B) in both oxidation states and bound to the exogenous ligands CO, NO, and O2. The results indicate that the GAF B domain increases the specificity with which the distal heme pocket of the GAF A domain interacts with CO and NO as opposed to O2. Specifically, while two comparable populations of CO and NO adducts are observed in GAF A DevS, only one of these two conformers is present in significant concentration in the GAF A/B and FL DevS proteins. In contrast, hydrogen bond interactions at the bound oxygen in the oxy complexes are conserved in all DevS constructs. The comparison of the data obtained with the O2 complexes with those of the CO and NO complexes suggests a model for ligand discrimination which relies on a specific hydrogen-bonding network with bound O2. It also suggests that interactions between the two GAF domains are responsible for transduction of structural changes at the heme domain that accompany ligand binding/dissociation to modulate activity at the kinase domain.  相似文献   

8.
DNA-binding response regulators (RRs) of the OmpR/PhoB subfamily alternate between inactive and active conformational states, with the latter having enhanced DNA-binding affinity. Phosphorylation of an aspartate residue in the receiver domain, usually via phosphotransfer from a cognate histidine kinase, stabilizes the active conformation. Many of the available structures of inactive OmpR/PhoB family proteins exhibit extensive interfaces between the N-terminal receiver and C-terminal DNA-binding domains. These interfaces invariably involve the α4-β5-α5 face of the receiver domain, the locus of the largest differences between inactive and active conformations and the surface that mediates dimerization of receiver domains in the active state. Structures of receiver domain dimers of DrrB, DrrD, and MtrA have been determined, and phosphorylation kinetics were analyzed. Analysis of phosphotransfer from small molecule phosphodonors has revealed large differences in autophosphorylation rates among OmpR/PhoB RRs. RRs with substantial domain interfaces exhibit slow rates of phosphorylation. Rates are greatly increased in isolated receiver domain constructs. Such differences are not observed between autophosphorylation rates of full-length and isolated receiver domains of a RR that lacks interdomain interfaces, and they are not observed in histidine kinase-mediated phosphotransfer. These findings suggest that domain interfaces restrict receiver domain conformational dynamics, stabilizing an inactive conformation that is catalytically incompetent for phosphotransfer from small molecule phosphodonors. Inhibition of phosphotransfer by domain interfaces provides an explanation for the observation that some RRs cannot be phosphorylated by small molecule phosphodonors in vitro and provides a potential mechanism for insulating some RRs from small molecule-mediated phosphorylation in vivo.  相似文献   

9.
The light, oxygen or voltage (LOV) domain belongs to the Per-ARNT-Sim (PAS) superfamily of domains, and functions with the flavin chromophore as a module for sensing blue light in plants and fungi. The Arabidopsis thaliana PAS/LOV proteins (PLPs), of unknown function, possess an N-terminal PAS domain and a C-terminal LOV domain. Our recent analysis using yeast two-hybrid and Escherichia coli protein production systems reveals that the interactions of Arabidopsis PLPs with several proteins diminish under blue light illumination and that the PLP LOV domain may bind to a flavin chromophore. These results suggest that PLP functions as a blue light receptor. Homologs of PLP exist in rice, tomato and moss. The LOV domains of these PLP homologs form a distinct group in phylogenetic analysis. These facts suggest that PLP belongs to a new class of plant blue light receptor.Key words: PAS, LOV, blue light, protein-protein interaction, photoreceptor  相似文献   

10.
Having multiple domains in proteins can lead to partial folding and increased aggregation. Folding cooperativity, the all or nothing folding of a protein, can reduce this aggregation propensity. In agreement with bulk experiments, a coarse-grained structure-based model of the three-domain protein, E. coli Adenylate kinase (AKE), folds cooperatively. Domain interfaces have previously been implicated in the cooperative folding of multi-domain proteins. To understand their role in AKE folding, we computationally create mutants with deleted inter-domain interfaces and simulate their folding. We find that inter-domain interfaces play a minor role in the folding cooperativity of AKE. On further analysis, we find that unlike other multi-domain proteins whose folding has been studied, the domains of AKE are not singly-linked. Two of its domains have two linkers to the third one, i.e., they are inserted into the third one. We use circular permutation to modify AKE chain-connectivity and convert inserted-domains into singly-linked domains. We find that domain insertion in AKE achieves the following: (1) It facilitates folding cooperativity even when domains have different stabilities. Insertion constrains the N- and C-termini of inserted domains and stabilizes their folded states. Therefore, domains that perform conformational transitions can be smaller with fewer stabilizing interactions. (2) Inter-domain interactions are not needed to promote folding cooperativity and can be tuned for function. In AKE, these interactions help promote conformational dynamics limited catalysis. Finally, using structural bioinformatics, we suggest that domain insertion may also facilitate the cooperative folding of other multi-domain proteins.  相似文献   

11.
Using yeast two-hybrid assay, we investigated protein-protein interactions between all orthologous histidine kinase (HK)/response regulator (RR) pairs of M. tuberculosis H37Rv and identified potential protein-protein interactions between a noncognate HK/RR pair, DosT/NarL. The protein interaction between DosT and NarL was verified by phosphotransfer reaction from DosT to NarL. Furthermore, we found that the DosT and DosS HKs, which share considerable sequence similarities to each other and form a two-component system with the DosR RR, have different cross-interaction capabilities with NarL: DosT interacted with NarL, while DosS did not. The dimerization domains of DosT and DosS were shown to be sufficient to confer specificity for DosR, and the different cross-interaction abilities of DosS and DosT with NarL were demonstrated to be attributable to variations in the amino acid sequences of the α2-helices of their dimerization domains.  相似文献   

12.
13.
Transposases are proteins that have assumed the mobility of class II transposable elements. In order to map the interfaces involved in transposase-transposase interactions, we have taken advantage of 12 transposase mutants that impair mariner transposase-transposase interactions taking place during transposition. Our data indicate that transposase-transposase interactions regulating Mos1 transposition are sophisticated and result from (i) active MOS1 dimerization through the first HTH of the N-terminal domain, which leads to inverted terminal repeat (ITR) binding; (ii) inactive dimerization carried by part of the C-terminal domain, which prevents ITR binding; and (iii) oligomerization. Inactive dimers are nonpermissive in organizing complexes that produce ITR binding, but the interfaces (or interactions) supplied in this state could play a role in the various rearrangements needed during transposition. Oligomerization is probably not due to a specific MOS1 domain, but rather the result of nonspecific interactions resulting from incorrect folding of the protein. Our data also suggest that the MOS1 catalytic domain is a main actor in the overall organization of MOS1, thus playing a role in MOS1 oligomerization. Finally, we propose that MOS1 behaves as predicted by the pre-equilibrium existing model, whereby proteins are found to exist simultaneously in populations with diverse conformations, monomers and active and inactive dimers for MOS1. We were able to identify several MOS1 mutants that modify this pre-existing equilibrium. According to their properties, some of these mutants will be useful tools to break down the remaining gaps in our understanding of mariner transposition.  相似文献   

14.
U Fiedler  V Weiss 《The EMBO journal》1995,14(15):3696-3705
During signal transduction, response regulators of two-component systems are phosphorylated in a conserved receiver module. Phosphorylation induces activation of the non-conserved output domain. We fused various domains of the response regulators NtrC, PhoB or CheB to the DNA binding domain of lambda repressor. Analysis of these hybrid proteins shows that the receiver modules of NtrC and PhoB are potential dimerization domains. In the unphosphorylated proteins, the ability of the receiver modules to dimerize is masked due to inhibition by their output domains. Inhibition can be relieved in two ways: phosphorylation of the receiver module or deletion of the output domain. In contrast, the receiver module of CheB lacks this ability for dimerization. We propose a model which groups response regulators into two classes. Common to both classes is the interaction between receiver and output domain in the unphosphorylated protein. In class I (e.g. NtrC and PhoB), this interaction leads to the inhibition of the receiver module. Phosphorylation relieves inhibition, thereby inducing activation via dimerization of the receiver modules. In class II (e.g. CheB), the interaction between receiver and output domain results in inhibition of the output domain. Phosphorylation relieves inhibition, thereby activating the output domain.  相似文献   

15.
Retinal rod cGMP phosphodiesterase (PDE6 family) is the effector enzyme in the vertebrate visual transduction cascade. Unlike other known PDEs that form catalytic homodimers, the rod PDE6 catalytic core is a heterodimer composed of alpha and beta subunits. A system for efficient expression of rod PDE6 is not available. Therefore, to elucidate the structural basis for specific dimerization of rod PDE6, we constructed a series of chimeric proteins between PDE6alphabeta and PDE5, which contain the N-terminal GAFa/GAFb domains, or portions thereof, of the rod enzyme. These chimeras were co-expressed in Sf9 cells in various combinations as His-, myc-, or FLAG-tagged proteins. Dimerization of chimeric PDEs was assessed using gel filtration and sucrose gradient centrifugation. The composition of formed dimeric enzymes was analyzed with Western blotting and immunoprecipitation. Consistent with the selectivity of PDE6 dimerization in vivo, efficient heterodimerization was observed between the GAF regions of PDE6alpha and PDE6beta with no significant homodimerization. In addition, PDE6alpha was able to form dimers with the cone PDE6alpha' subunit. Furthermore, our analysis indicated that the PDE6 GAFa domains contain major structural determinants for the affinity and selectivity of dimerization of PDE6 catalytic subunits. The key dimerization selectivity module of PDE6 has been localized to a small segment within the GAFa domains, PDE6alpha-59-74/PDE6beta-57-72. This study provides tools for the generation of the homodimeric alphaalpha and betabeta enzymes that will allow us to address the question of functional significance of the unique heterodimerization of rod PDE6.  相似文献   

16.
17.
We report that a symmetric small-molecule ligand mediates the assembly of antibody light chain variable domains (VLs) into a correspondent symmetric ternary complex with novel interfaces. The L5* fluorogen activating protein is a VL domain that binds malachite green (MG) dye to activate intense fluorescence. Crystallography of liganded L5* reveals a 2:1 protein:ligand complex with inclusive C2 symmetry, where MG is almost entirely encapsulated between an antiparallel arrangement of the two VL domains. Unliganded L5* VL domains crystallize as a similar antiparallel VL/VL homodimer. The complementarity-determining regions are spatially oriented to form novel VL/VL and VL/ligand interfaces that tightly constrain a propeller conformer of MG. Binding equilibrium analysis suggests highly cooperative assembly to form a very stable VL/MG/VL complex, such that MG behaves as a strong chemical inducer of dimerization. Fusion of two VL domains into a single protein tightens MG binding over 1000-fold to low picomolar affinity without altering the large binding enthalpy, suggesting that bonding interactions with ligand and restriction of domain movements make independent contributions to binding. Fluorescence activation of a symmetrical fluorogen provides a selection mechanism for the isolation and directed evolution of ternary complexes where unnatural symmetric binding interfaces are favored over canonical antibody interfaces. As exemplified by L5*, these self-reporting complexes may be useful as modulators of protein association or as high-affinity protein tags and capture reagents.  相似文献   

18.
Isothermal calorimetry (ITC) measurements yielded the binding constants during complex formation of light-inducible histidine kinases (HK) and their cognate CheY-type response regulators (RR). HK-RR interactions represent the core function of the bacterial two-component system, which is also present in many bacterial phytochromes. Here, we have studied the recombinant forms of phytochromes CphA and CphB from the cyanobacterium Tolypothrix PCC7601 and their cognate RRs RcpA and RcpB. The interaction between the two reaction partners (HK and RR) was studied in the presence and absence of ATP. A complex formation was observable in the presence of ATP, but specific interactions were only found when a non-hydrolyzable ATP derivative was added to the mixture. Also, the incubation of the HK domain alone (expressed as a recombinant protein) with the RR did not yield specific interactions, indicating that the HK domain is only active as a component of the full-length phytochrome. Considering also previous studies on the same proteins (Hübschmann, T., Jorissen, H. J. M. M., Börner, T., Gärtner, W., and de Marsac, N. (2001) Eur. J. Biochem. 268, 3383–3389) we now conclude that the HK domains of these phytochromes are active only when the chromophore domain is in its Pr form. The formerly documented phosphate transfer between the HK domain and the RR takes place via a transiently formed protein-protein complex, which becomes detectable by ITC in the presence of a non-hydrolyzable ATP derivative. This finding is of interest also in relation to the function of some (blue light-sensitive) photoreceptors that carry the HK domain and the RR fused together in one single protein.  相似文献   

19.
20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号