首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
Upon inflammation, circulating monocytes leave the bloodstream and migrate into the tissues, where they differentiate after exposure to various growth factors, cytokines or infectious agents. The best defined macrophage polarization types are M1 and M2. However, the platelet-derived CXC chemokine CXCL4 induces the polarization of macrophages into a unique phenotype. In this study, we compared the effect of CXCL4 and its variant CXCL4L1 on the differentiation of monocytes into macrophages and into immature monocyte-derived dendritic cells (iMDDC). Differently to M-CSF and CXCL4, CXCL4L1 is not a survival factor for monocytes. Moreover, the expression of the chemokine receptors CCR2, CCR5 and CXCR3 was significantly higher on CXCL4L1-treated monocytes compared to M-CSF- and CXCL4-stimulated monocytes. IL-1 receptor antagonist (IL-1RN) expression was upregulated by CXCL4 and downregulated by CXCL4L1, respectively, whereas both chemokines reduced the expression of the mannose receptor (MRC). Furthermore, through activation of CXCR3, CXCL4L1-stimulated monocytes released significantly higher amounts of CCL2 and CXCL8 compared to CXCL4-treated monocytes, indicating more pronounced inflammatory traits for CXCL4L1. In contrast, in CXCL4L1-treated monocytes, the production of CCL22 was lower. Compared to iMDDC generated in the presence of CXCL4L1, CXCL4-treated iMDDC showed an enhanced phagocytic capacity and downregulation of expression of certain surface markers (e.g. CD1a) and specific enzymes (e.g. MMP-9 and MMP-12). CXCL4 and CXCL4L1 did not affect the chemokine receptor expression on iMDDC and cytokine production (CCL2, CCL18, CCL22, CXCL8, IL-10) by CXCL4- or CXCL4L1-differentiated iMDDC was similar. We can conclude that both CXCL4 and CXCL4L1 exert a direct effect on monocytes and iMDDC. However, the resulting phenotypes are different, which suggests a unique role for the two CXCL4 variants in physiology and/or pathology.  相似文献   

3.
4.
The progressive growth of Echinococcus multilocularis metacestodes and their tissue infiltration will cause organ malfunction and finally failure. In few patients, E. multilocularis metacestode proliferation will spontaneously regress, but little is known about the determinants which may restrain metacestode survival and growth. In this study, chemokine responses were investigated in E. multilocularis patients at different states of infection, i.e. with progressive, stable and cured alveolar echinococcosis (AE). Characteristic chemokine profiles and changes in their production were observed in AE patients and infection-free controls when their peripheral blood cells were cultured with E. multilocularis antigens. The production of CC and CXC chemokines which associate with inflammation (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5 and GRO-α/CXCL1) was constitutively larger in AE patients than in controls; and the elevated chemokine releases were equal in patients with progressive, stable or cured AE. Cluster analyses identified three distinct chemokine response profiles; chemokines were enhanced, depressed or produced in similar quantities in AE patients and controls. A disparate cellular responsiveness was observed in AE patients to viable E. multilocularis vesicles; cluster 1 (GRO-α/CXCL1, MCP-3/CCL7, MCP-4/CCL13, TARC/CCL17, LARC/CCL20) and cluster 2 chemokines (PARC/CCL18, MDC/CCL22, MIG/CXCL9) were clearly diminished, while cluster 3 chemokines (MIP-1α/CCL3, MIP-1β/CCL4, RANTES/CCL5) augmented. The increased production of inflammatory chemokines in patients even with cured AE could be induced by residual E. multilocularis metacestode lesions which continuously stimulate production of inflammatory chemokines. E. multilocularis metacestodes also suppressed cellular chemokine production in AE patients, and this may constitute an immune escape mechanism which reduces inflammatory host responses, prevents tissue destruction and organ damage, but may also facilitate parasite persistence.  相似文献   

5.
In vivo leukocyte recruitment is not fully understood and may result from interactions of chemokines with glycosaminoglycans/GAGs. We previously showed that chlorite-oxidized oxyamylose/COAM binds the neutrophil chemokine GCP-2/CXCL6. Here, mouse chemokine binding by COAM was studied systematically and binding affinities of chemokines to COAM versus GAGs were compared. COAM and heparan sulphate bound the mouse CXC chemokines KC/CXCL1, MIP-2/CXCL2, IP-10/CXCL10 and I-TAC/CXCL11 and the CC chemokine RANTES/CCL5 with affinities in the nanomolar range, whereas no binding interactions were observed for mouse MCP-1/CCL2, MIP-1α/CCL3 and MIP-1β/CCL4. The affinities of COAM-interacting chemokines were similar to or higher than those observed for heparan sulphate. Although COAM did not display chemotactic activity by itself, its co-administration with mouse GCP-2/CXCL6 and MIP-2/CXCL2 or its binding of endogenous chemokines resulted in fast and cooperative peritoneal neutrophil recruitment and in extravasation into the cremaster muscle in vivo. These local GAG mimetic features by COAM within tissues superseded systemic effects and were sufficient and applicable to reduce LPS-induced liver-specific neutrophil recruitment and activation. COAM mimics glycosaminoglycans and is a nontoxic probe for the study of leukocyte recruitment and inflammation in vivo.  相似文献   

6.

Background

We have previously shown in two independent cohorts that circulating first trimester Macrophage Inhibitory Cytokine-1 (MIC-1) levels are lower in women in early pregnancy who are destined to miscarriage. While promising, the diagnostic performance of measuring MIC-1 alone was not sufficient for it to be a useful predictive test for miscarriage. Besides MIC-1, there are other cytokines, as well as chemokines, involved in facilitating early pregnancy. We reasoned that screening these factors in maternal plasma could uncover other predictive markers of miscarriage.

Methods

This was a nested case control study, of 78 women from a prospective study of 462 attending the Early Pregnancy Assessment Unit in the first trimester (EPAU) with a threatened miscarriage; 34 of these subsequently miscarried (cases) and 44 went on to have a normal delivery (controls) Cytokines IL-1β, IL-6 and IL-10, and the chemokines, CXCL8, CCL2, CCL5, CCL7 and CX3CL1 were measured in plasma from our cohort.

Results

The cytokines IL-1β, IL-6, IL-10 and the chemokine CXCL8 were not detectable in first trimester plasma. The chemokines CCL2, CCL5, CCL7 and CX3CL1 were detectable in all samples but levels did not vary across 5–12 weeks of gestation among controls. Plasma levels of these chemokines were no different in the miscarriage cohort compared to controls.

Conclusion

The chemokines CCL2, CCL5, CCL7 and CX3CL1 were detectable in plasma during the first trimester while IL-1β, IL-6, IL-10 and CXCL8 were not. However, none of the cytokines and chemokines screened were different in maternal plasma in cases or controls. These therefore do not appear to have potential for application as predictive biomarkers of miscarriage.  相似文献   

7.
8.
9.
Several factors support CLL cell survival in the microenvironment. Under different experimental conditions, IL21 can either induce apoptosis or promote CLL cell survival. To investigate mechanisms involved in the effects of IL21, we studied the ability of IL21 to modulate gene and miRNA expressions in CD40-activated CLL cells. IL21 was a major regulator of chemokine production in CLL cells and it modulated the expression of genes involved in cell movement, metabolism, survival and apoptosis. In particular, IL21 down-regulated the expression of the chemokine genes CCL4, CCL3, CCL3L1, CCL17, and CCL2, while it up-regulated the Th1-related CXCL9 and CXCL10. In addition, IL21 down-regulated the expression of genes encoding signaling molecules, such as CD40, DDR1 and PIK3CD. IL21 modulated a similar set of genes in CLL and normal B-cells (e.g. chemokine genes), whereas other genes, including MYC, TNF, E2F1, EGR2 and GAS-6, were regulated only in CLL cells. An integrated analysis of the miRNome and gene expression indicated that several miRNAs were under IL21 control and these could, in turn, influence the expression of potential target genes. We focused on hsa-miR-663b predicted to down-regulate several relevant genes. Transfection of hsa-miR-663b or its specific antagonist showed that this miRNA regulated CCL17, DDR1, PIK3CD and CD40 gene expression. Our data indicated that IL21 modulates the expression of genes mediating the crosstalk between CLL cells and their microenvironment and miRNAs may take part in this process.  相似文献   

10.

Background

Chronic Chagas cardiomyopathy (CCC), a life-threatening inflammatory dilated cardiomyopathy, affects 30% of the approximately 8 million patients infected by Trypanosoma cruzi. Even though the Th1 T cell-rich myocarditis plays a pivotal role in CCC pathogenesis, little is known about the factors controlling inflammatory cell migration to CCC myocardium.

Methods and Results

Using confocal immunofluorescence and quantitative PCR, we studied cell surface staining and gene expression of the CXCR3, CCR4, CCR5, CCR7, CCR8 receptors and their chemokine ligands in myocardial samples from end-stage CCC patients. CCR5+, CXCR3+, CCR4+, CCL5+ and CXCL9+ mononuclear cells were observed in CCC myocardium. mRNA expression of the chemokines CCL5, CXCL9, CXCL10, CCL17, CCL19 and their receptors was upregulated in CCC myocardium. CXCL9 mRNA expression directly correlated with the intensity of myocarditis, as well as with mRNA expression of CXCR3, CCR4, CCR5, CCR7, CCR8 and their ligands. We also analyzed single-nucleotide polymorphisms for genes encoding the most highly expressed chemokines and receptors in a cohort of Chagas disease patients. CCC patients with ventricular dysfunction displayed reduced genotypic frequencies of CXCL9 rs10336 CC, CXCL10 rs3921 GG, and increased CCR5 rs1799988CC as compared to those without dysfunction. Significantly, myocardial samples from CCC patients carrying the CXCL9/CXCL10 genotypes associated to a lower risk displayed a 2–6 fold reduction in mRNA expression of CXCL9, CXCL10, and other chemokines and receptors, along with reduced intensity of myocarditis, as compared to those with other CXCL9/CXCL10 genotypes.

Conclusions

Results may indicate that genotypes associated to reduced risk in closely linked CXCL9 and CXCL10 genes may modulate local expression of the chemokines themselves, and simultaneously affect myocardial expression of other key chemokines as well as intensity of myocarditis. Taken together our results may suggest that CXCL9 and CXCL10 are master regulators of myocardial inflammatory cell migration, perhaps affecting clinical progression to the life-threatening form of CCC.  相似文献   

11.
Schistosomiasis continues to be an important cause of parasitic morbidity and mortality world-wide. Determining the molecular mechanisms regulating the development of granulomas and fibrosis will be essential for understanding how schistosome antigens interact with the host environment. We report here the first whole genome microarray analysis of the murine liver during the progression of Schistosoma japonicum egg-induced granuloma formation and hepatic fibrosis. Our results reveal a distinct temporal relationship between the expression of chemokine subsets and the recruitment of cells to the infected liver. Genes up-regulated earlier in the response included T- and B-cell chemoattractants, reflecting the early recruitment of these cells illustrated by flow cytometry. The later phases of the response corresponded with peak recruitment of eosinophils, neutrophils, macrophages and myofibroblasts/hepatic stellate cells (HSCs) and the expression of chemokines with activity for these cells including CCL11 (eotaxin 1), members of the Monocyte-chemoattractant protein family (CCL7, CCL8, CCL12) and the Hepatic Stellate Cell/Fibrocyte chemoattractant CXCL1. Peak expression of macrophage chemoattractants (CCL6, CXCL14) and markers of alternatively activated macrophages (e.g. Retnla) during this later phase provides further evidence of a role for these cells in schistosome-induced pathology. Additionally, we demonstrate that CCL7 immunolocalises to the fibrotic zone of granulomas. Furthermore, striking up-regulation of neutrophil markers and the localisation of neutrophils and the neutrophil chemokine S100A8 to fibrotic areas suggest the involvement of neutrophils in S. japonicum-induced hepatic fibrosis. These results further our understanding of the immunopathogenic and, especially, chemokine signalling pathways that regulate the development of S. japonicum-induced granulomas and fibrosis and may provide correlative insight into the pathogenesis of other chronic inflammatory diseases of the liver where fibrosis is a common feature.  相似文献   

12.
13.
Chemokines and chemokine receptor-mediated effects are important mediators of the immunological response and cure in human leishmaniasis. However, in addition to their signalling properties for leukocytes, many chemokines have also been shown to act directly as antimicrobial peptides on bacteria and fungi. We screened ten human chemokines (CXCL2, CXCL6, CXCL8, CXCL9, CXCL10, CCL2, CCL3, CCL20, CCL27, CCL28) for antimicrobial effects on the promastigote form of the protozoan parasite Leishmania mexicana, and observed direct parasiticidal effects of several, CCL28 being the most potent. Damage to the plasma membrane integrity could be visualised by entrance of propidium iodide, as measured with flow cytometry, and by scanning electron microscopy, which showed morphological changes and aggregation of cells. The findings were in concordance with parasiticidal activity, measured by decreased mitochondrial activity in an MTT-assay. This is the first report of direct antimicrobial activity by chemokines on parasites. This component of immunity against Leishmania parasites identified here warrants further investigation that might lead to new insight in the mechanisms of human infection and/or new therapeutic approaches.  相似文献   

14.
Chronic systemic inflammation contributes to the development of adverse health conditions, yet the influence of fixed and modifiable risk factors on many serologic biomarkers of inflammation remains largely unknown. Serum concentrations of twenty-three biomarkers, including C-reactive protein (CRP), cytokines (CXCL11, CXCL8, CXCL10, CCL2, CCL13, CCL4, CCL17, CXCL13, IL-10, IL-12p70, IL-6, TNF-α, IL-2, IFN-γ, IL-1β, GM-CSF, BAFF), and soluble immune receptors (sCD14, sIL-2Rα, sCD27, sgp130, sTNF-R2) were measured longitudinally using multiplexed immunometric assays in 250 HIV-uninfected men followed in the Multicenter AIDS Cohort Study (1984–2009). Generalized gamma regression was used to determine the statistical significance of factors associated with each biomarker. After accounting for age, race, and education, and for analysis of multiple biomarkers, higher concentrations of specific individual biomarkers were significantly (P < 0.002) associated with hypertension, obesity, hepatitis C infection, stimulant use, and diabetes and lower concentrations with hypercholesterolemia. These associations should be taken into account in epidemiological studies of these biomarkers, and may provide potential targets for disease prevention and treatment.  相似文献   

15.
Recruitment of mesenchymal stem cells (MSC) to tissue damages is a promising approach for in situ tissue regeneration. The physiological mechanisms and regulatory processes of MSC trafficking to injured tissue remain poorly understood. However, the pivotal role of chemokines in MSC recruitment has already been shown.The aim of this study was to determine the migratory potential and the gene expression profile of MSC stimulated with the CC chemokine CCL25 (TECK). Bone marrow derived human MSC were exposed to different doses of CCL25 in a standardized chemotaxis assay. Microarray gene expression profiling and pathway analysis were performed for CCL25 stimulated MSC.Maximum migration of MSC towards CCL25 was observed at 103 nM. Microarray analysis revealed an induction of molecules directly involved in chemotaxis and homing of bone marrow cells (CXCL1-3, CXCL8, PDE4B), cytoskeletal and membrane reorganisation (CXCL8, PLD1, IGFBP1), cellular polarity (PLD1), and cell movement (CXCL1-3, CXCL6, CXCL8, PTGS2, PDE4B, TGM2). Respective chemokine secretion was confirmed by protein membrane-array analysis. The activation of CXCR2 ligands (CXCL1-3, CXCL5-6, CXCL8) and a LIF-receptor/gp130 ligand (LIF) indicated an involvement of the respective signaling pathways during initiation of chemotaxis and migration.These results suggest CCL25 as a new potential candidate for further in situ regeneration approaches.  相似文献   

16.
Multiple myeloma (MM) is a clonal disease of plasma cells that remains incurable despite the advent of several novel therapeutics. In this study, we aimed to delineate the impact of snake venom extracted from Walterinnesia aegyptia (WEV) alone or in combination with silica nanoparticles (WEV+NP) on primary MM cells isolated from patients diagnosed with MM as well as on two MM cell lines, U266 and RPMI 8226. The IC50 values of WEV and WEV+NP that significantly decreased MM cell viability without affecting the viability of normal peripheral mononuclear cells (PBMCs) were determined to be 25 ng/ml and 10 ng/ml, respectively. Although both WEV (25 ng/ml) and WEV+NP (10 ng/ml) decreased the CD54 surface expression without affecting the expression of CXCR4 (CXCL12 receptor) on MM cells, they significantly reduced the ability of CXC chemokine ligand 12 (CXCL12) to induce actin cytoskeleton rearrangement and the subsequent reduction in chemotaxis. It has been established that the binding of CXCL12 to its receptor CXCR4 activates multiple intracellular signal transduction pathways that regulate MM cell chemotaxis, adhesion, and proliferation. We found that WEV and WEV+NP clearly decreased the CXCL12/CXCR4-mediated activation of AKT, ERK, NFκB and Rho-A using western blot analysis; abrogated the CXCL12-mediated proliferation of MM cells using the CFSE assay; and induced apoptosis in MM cell as determined by PI/annexin V double staining followed by flow cytometry analysis. Monitoring the expression of B-cell CCL/Lymphoma 2 (Bcl-2) family members and their role in apoptosis induction after treatment with WEV or WEV+NP revealed that the combination of WEV with NP robustly decreased the expression of the anti-apoptotic effectors Bcl-2, BclXL and Mcl-1; conversely increased the expression of the pro-apoptotic effectors Bak, Bax and Bim; and altered the mitochondrial membrane potential in MM cells. Taken together, our data reveal the biological effects of WEV and WEV+NP and the underlying mechanisms against myeloma cancer cells.  相似文献   

17.
Osteoclasts (OCs) play an essential role in bone destruction in patients with multiple myeloma (MM). Bortezomib can ameliorate bone destruction in patients with MM, but advanced MM often resists bortezomib. We studied the molecular mechanisms of bortezomib tolerance in MM. The expression of the MM-related genes in newly diagnosed patients with MM and normal donors were studied. C-C motif chemokine ligand 3 (CCL3) is a cytokine involved in the differentiation of OCs, and its expression is closely related to APRIL (a proliferation-inducing ligand). We found that bortezomib treatment inhibited APRIL and CCL3. But the heme oxygenase-1 (HO-1) activator hemin attenuated the inhibitory effects of bortezomib on APRIL and CCL3. We induced mononuclear cells to differentiate into OCs, and the enzyme-linked immunosorbent assay showed that the more OCs differentiated, the higher the levels CCL3 secretions detected. Animal experiments showed that hemin promoted MM cell infiltration in mice. The weight and survival rate of tumor mice were associated with HO-1 expression. Immunohistochemical staining showed that HO-1, APRIL, and CCL3 staining were positively stained in the tumor infiltrating sites. Then, MM cells were transfected with L-HO-1/si-HO-1 expression vectors and cultured with an nuclear factor (NF)-kappa B (κB) pathway inhibitor, QNZ. The results showed that HO-1 was the upstream gene of APRIL, NF-κB, and CCL3. We showed that HO-1 could attenuate the inhibitory effect of bortezomib against the APRIL-NF-κB-CCL3 signaling pathways in MM cells, and the tolerance of MM cells to bortezomib and the promotion of bone destruction are related to HO-1.  相似文献   

18.
Leukocyte adhesion and transmigration are central features governing immune surveillance and inflammatory reactions in body tissues. Within the liver sinusoids, chemokines initiate the first crucial step of T-cell migration into the hepatic tissue. We studied molecular mechanisms involved in endothelial chemokine supply during hepatic immune surveillance and liver inflammation and their impact on the recruitment of CD4+ T cells into the liver. In the murine model of Concanavalin A-induced T cell-mediated hepatitis, we showed that hepatic expression of the inflammatory CXC chemokine ligands (CXCL)9 and CXCL10 strongly increased whereas homeostatic CXCL12 significantly decreased. Consistently, CD4+ T cells expressing the CXC chemokine receptor (CXCR)3 accumulated within the inflamed liver tissue. In histology, CXCL9 was associated with liver sinusoidal endothelial cells (LSEC) which represent the first contact site for T-cell immigration into the liver. LSEC actively transferred basolaterally internalized CXCL12, CXCL9 and CXCL10 via clathrin-coated vesicles to CD4+ T cells leading to enhanced transmigration of CXCR4+ total CD4+ T cells and CXCR3+ effector/memory CD4+ T cells, respectively in vitro. LSEC-expressed CXCR4 mediated CXCL12 transport and blockage of endothelial CXCR4 inhibited CXCL12-dependent CD4+ T-cell transmigration. In contrast, CXCR3 was not involved in the endothelial transport of its ligands CXCL9 and CXCL10. The clathrin-specific inhibitor chlorpromazine blocked endothelial chemokine internalization and CD4+ T-cell transmigration in vitro as well as migration of CD4+ T cells into the inflamed liver in vivo. Moreover, hepatic accumulation of CXCR3+ CD4+ T cells during T cell-mediated hepatitis was strongly reduced after administration of chlorpromazine. These data demonstrate that LSEC actively provide perivascularly expressed homeostatic and inflammatory chemokines by CXCR4- and clathrin-dependent intracellular transport mechanisms thereby contributing to the hepatic recruitment of CD4+ T-cell populations during immune surveillance and liver inflammation.  相似文献   

19.
Until now, no data are present about the effect of peroxisome proliferator-activated receptor (PPAR)α activation on the prototype Th1 [chemokine (C–X–C motif) ligand (CXCL)10] (CXCL10) and Th2 [chemokine (C–C motif) ligand 2] (CCL2) chemokines secretion in thyroid cells.The role of PPARα and PPARγ activation on CXCL10 and CCL2 secretion was tested in Graves' disease (GD) and control primary thyrocytes stimulated with interferon (IFN)γ and tumor necrosis factor (TNF)α.IFNγ stimulated both CXCL10 and CCL2 secretion in primary GD and control thyrocytes. TNFα alone stimulated CCL2 secretion, while had no effect on CXCL10. The combination of IFNγ and TNFα had a synergistic effect both on CXCL10 and CCL2 chemokines in GD thyrocytes at levels comparable to those of controls. PPARα activators inhibited the secretion of both chemokines (stimulated with IFNγ and TNFα) at a level higher (for CXCL10, about 60–72%) than PPARγ agonists (about 25–35%), which were confirmed to inhibit CXCL10, but not CCL2.Our data show that CCL2 is modulated by IFNγ and TNFα in GD and normal thyrocytes. Furthermore we first show that PPARα activators inhibit the secretion of CXCL10 and CCL2 in thyrocytes, suggesting that PPARα may be involved in the modulation of the immune response in the thyroid.  相似文献   

20.

Background

Recent research has suggested that the Th1 and Th2 chemokine/cytokine axis contributes to the development of chronic hypersensitivity pneumonitis (HP). Acute exacerbations (AE) are significant factors in the prognosis of chronic HP. Little is known, however, about these biomarkers in association with AE in chronic HP patients.

Methods

Fifty-six patients with chronic HP were evaluated, including 14 patients during episodes of AE. Th1 mediators (C-X-C chemokine ligand [CXCL]10 and interferon [IFN]-γ), Th2 mediators (C-C chemokine ligand [CCL]17, interleukin-4, and interleukin-13), and pro-fibrotic mediator (transforming growth factor [TGF]-β) were measured to evaluate the mediators as predictors of AE. C-C chemokine receptor (CCR)4 (receptor for CCL17)-positive lymphocytes were quantified in lung specimens.

Results

Serum CCL17 levels at baseline independently predicted the first episode of AE (HR, 72.0; 95% CI, 5.03-1030.23; p = 0.002). AE was significantly more frequent in the higher-CCL17 group (≥285 pg/ml) than in the lower-CCL17 group (<285 pg/ml) (log-rank test, p = 0.0006; 1-year incidence: higher CCL17 vs. lower CCL17, 14.3% vs. 0.0%). Serum CCL17 levels and CCR4-positive cells during episodes of AE were increased from the baseline (p = 0.01 and 0.031).

Conclusions

Higher serum concentrations of CCL17 at baseline may be predictive of AE in patients with chronic HP, and CCL17 may contribute to the pathology of AE by inducing the accumulation of CCR4-positive lymphocytes in the lungs.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号