首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
It has been known that umami substances such as monosodium L-glutamate (MSG) and 5'-inosine monophosphate (IMP) elicit a unique taste called 'umami' in humans. One of the characteristics of the umami taste is synergism: the synergistic enhancement of the magnitude of response produced by the addition of 5'-ribonucleotides to MSG. In addition to this well-documented synergism, we report here for the first time on another type of synergism between a glutamate receptor agonist, L-AP4, and sweet substances, by analyzing the chorda tympani responses in rats. The results are as follows: (i) when L-AP4 was mixed with one of the sweet substances, such as sucrose, glucose, fructose and maltose, large synergistic responses were observed. (ii) These synergistic responses, except to L-AP4 + sucrose, were not suppressed by sweet taste suppressants, gurmarin and pronase E. (iii) These synergistic responses were not suppressed by either metabotropic or ionotropic glutamate receptor antagonists. (iv) Fibers that responded well to the binary mixtures of L-AP4 and sweet substances also responded well to NaCl and HCl, but very weakly to sucrose. These findings are different from the characteristics of synergism between glutamate and IMP. The multiple transduction mechanisms for the umami taste in rat taste cells are discussed.  相似文献   

2.
Umami taste (corresponds to savory in English) is elicited by L-glutamate, typically as its Na salt (monosodium glutamate: MSG), and is one of five basic taste qualities that plays a key role in intake of amino acids. A particular property of umami is the synergistic potentiation of glutamate by purine nucleotide monophosphates (IMP, GMP). A heterodimer of a G protein coupled receptor, TAS1R1 and TAS1R3, is proposed to function as its receptor. However, little is known about genetic variation of TAS1R1 and TAS1R3 and its potential links with individual differences in umami sensitivity. Here we investigated the association between recognition thresholds for umami substances and genetic variations in human TAS1R1 and TAS1R3, and the functions of TAS1R1/TAS1R3 variants using a heterologous expression system. Our study demonstrated that the TAS1R1-372T creates a more sensitive umami receptor than -372A, while TAS1R3-757C creates a less sensitive one than -757R for MSG and MSG plus IMP, and showed a strong correlation between the recognition thresholds and in vitro dose - response relationships. These results in human studies support the propositions that a TAS1R1/TAS1R3 heterodimer acts as an umami receptor, and that genetic variation in this heterodimer directly affects umami taste sensitivity.  相似文献   

3.
In long-term two-bottle tests, mice from the C57BL/6ByJ (B6) strain drink more monosodium L-glutamate (MSG) and inosine-5'-monophosphate (IMP) compared with mice from the 129P3/J (129) strain. The goal of this study was to assess the role of afferent gustatory input in these strain differences. We measured integrated responses of the mouse chorda tympani and glossopharyngeal nerves to lingual application of compounds that evoke umami taste in humans: MSG, monoammonium L-glutamate (NH(4) glutamate), IMP and guanosine-5'-monophosphate (GMP) and also to other taste stimuli. Chorda tympani responses to MSG and NH(4) glutamate were similar in B6 and 129 mice. Chorda tympani responses to IMP and GMP were lower in B6 than in 129 mice. Responses to umami stimuli in the glossopharyngeal nerve did not differ between the B6 and 129 strains. Responses to MSG, IMP and GMP were not affected by sodium present in these compounds because B6 and 129 mice had similar neural taste responses to NaCl. This study has demonstrated that the increased ingestive responses to the umami stimuli in B6 mice are accompanied by either unchanged or decreased neural responses to these stimuli. Lack of support for the role of the chorda tympani or glossopharyngeal nerves in the enhanced consumption of MSG and IMP by B6 mice suggests that it is due to some other factors. Although results of our previous study suggest that postingestive effects of MSG can affect its intake, contribution of other gustatory components (e.g. greater superficial petrosal nerve or central gustatory processing) to the strain differences in consumption of umami compounds also cannot be excluded. Strain differences in gustatory neural responses to nucleotides but not glutamate suggest that these compounds may activate distinct taste transduction mechanisms.  相似文献   

4.
Monosodium glutamate (MSG) elicits a taste called umami and interacts synergistically with nucleotide monophosphates such as 5'-inosine monophosphate (IMP) to potentiate this taste intensity. Indeed, the synergistic interaction of nucleotide monophosphates and MSG is a hallmark of umami. We examined interactions between MSG and other taste stimuli, including IMP, by measuring the lick rates of non-deprived rats during 30 s trials. To control for non-linear psychophysical functions, the concentration of one taste stimulus in a binary mixture was systematically increased while the concentration of the second taste stimulus was decreased (stimulus substitution method). Synergy between two stimuli was detected if the lick rate for a binary mixture exceeded that expected from the sum of the lick rates for each stimulus alone. In initial experiments, taste synergy was observed when rats were presented with mixtures of MSG and IMP but not with mixtures of MSG and sucrose. In subsequent experiments, glutamate receptor agonists other than MSG were presented with IMP to test for taste synergy. No evidence of synergy was seen when rats were presented with mixtures of IMP and kainic acid or IMP and N:-methyl-D-aspartate. However, taste synergy between IMP and L-AP4, a potent agonist at mGluR4 receptors, was observed. These results suggest that a metabotropic glutamate receptor similar to mGluR4 may be involved in the taste synergy that characterizes umami.  相似文献   

5.
Recently, candidates for umami receptors have been identified in taste cells, but the precise transduction mechanisms of the downstream receptor remain unknown. To investigate how intracellular Ca(2+) increases in the umami transduction pathway, we measured changes in intracellular Ca(2+) levels in response to umami stimuli monosodium glutamate (MSG), IMP, and MSG + IMP in mouse taste receptor cells (TRCs) by Ca(2+) imaging. Even when extracellular Ca(2+) was absent, 1/3 of umami-responsive TRCs exhibited increased intracellular Ca(2+) levels. When intracellular Ca(2+) was depleted, half of the TRCs retained their response to umami. These results suggest that umami-responsive TRCs increase their intracellular Ca(2+) levels through two pathways: by releasing Ca(2+) from intracellular stores and by an influx of Ca(2+) from extracellular sources. We conclude that the Ca(2+) influx from extracellular source might play an important role in the synergistic effect between MSG and IMP.  相似文献   

6.
Food contains various taste substances. Among them, umami substances play an important role with regard to the perception of the taste of food, but, few studies have examined the taste characteristics of representative umami substances other than monosodium L-glutamate (MSG). By conducting mouse behavioral studies (the 48-h 2-bottle preference test and the conditioned taste aversion test) and assessing gustatory nerve responses, we investigated the taste characteristics of unique umami substances, including sodium succinate, L-theanine, betaine, and the enantiomer of MSG, D-MSG. Furthermore, we examined the synergy of umami with inosine 5'-monophoshate (IMP). In the case of the mice, sodium succinate had an umami taste and showed strong synergy with IMP. L-theanine showed synergy with IMP but did not have an umami taste without IMP. In contrast, betaine did not have an umami taste or synergy with IMP. D-MSG might have weak synergy with IMP.  相似文献   

7.
Taste enhancements between various amino acids and IMP   总被引:3,自引:0,他引:3  
Kawai M  Okiyama A  Ueda Y 《Chemical senses》2002,27(8):739-745
It is well known that a strong synergistic interaction of umami occurs between L-alpha-amino acids with an acidic side chain, such as L-Glu or L-Asp, and 5'-mononucleotides, such as inosine 5'-monophosphate (IMP). We tested taste interactions between various L-alpha-amino acids and IMP by the psychophysical method and found that taste enhancement occurred when IMP was added to several sweet amino acids, such as L-Ala, L-Ser and Gly. The enhanced quality of taste was recognized as umami, and was not blocked by the sweetness inhibitor +/-2-(p-methoxyphenoxy)propanoic acid. The total taste intensities of various concentrations of the amino acid and IMP mixtures were measured using magnitude estimation. The results showed that the potentiation ratios were larger than 1 in the cases of L-Ala, L-Ser and Gly. However, the ratio was approximately 1 in the case of D-Ala, which had an enhanced taste of sweetness. Thus the umami taste enhancement of several sweet L-alpha-amino acids by IMP was synergistic rather than additive as that of acidic amino acids.  相似文献   

8.
L-theanine elicits an umami taste with inosine 5'-monophosphate   总被引:1,自引:0,他引:1  
We investigated the taste synergy between L-theanine and the flavour enhancer, inosine 5'-monophosphate (IMP), by using a human sensory evaluation. When L-theanine was added to IMP, only the umami taste was enhanced. We then investigated this synergistic effect of L-theanine in mice by gustatory nerve recording. We confirmed the synergism between L-theanine and IMP for the umami taste.  相似文献   

9.
The ingestion of dietary protein is of vital importance for the maintenance of fundamental physiological processes. The taste modality umami, with its prototype stimulus, glutamate, is considered to signal the protein content of food. Umami was thought to be mediated by the heterodimeric amino acid receptor, T1R1 + T1R3. Based on knockout studies, additional umami receptors are likely to exist. In addition to amino acids, certain peptides can also elicit and enhance umami taste suggesting that protein breakdown products may contribute to umami taste. The recently deorphanized peptone receptor, GPR92 (also named GPR93; LPAR5), is expressed in gastric enteroendocrine cells where it responds to protein hydrolysates. Therefore, it was of immediate interest to investigate if the receptor GPR92 is expressed in gustatory sensory cells. Using immunohistochemical approaches we found that a large population of cells in murine taste buds was labeled with an GPR92 antibody. A molecular phenotyping of GPR92 cells revealed that the vast majority of GPR92-immunoreactive cells express PLCβ2 and can therefore be classified as type II cells. More detailed analyses have shown that GPR92 is expressed in the majority of T1R1-positive taste cells. These results indicate that umami cells may respond not only to amino acids but also to peptides in protein hydrolysates.  相似文献   

10.
Although the five basic taste qualities—sweet, sour, bitter, salty and umami—can be recognized by the respective gustatory system, interactions between these taste qualities are often experienced when food is consumed. Specifically, the umami taste has been investigated in terms of whether it enhances or reduces the other taste modalities. These studies, however, are based on individual perception and not on a molecular level. In this study we investigated umami-sweet taste interactions using umami compounds including monosodium glutamate (MSG), 5’-mononucleotides and glutamyl-dipeptides, glutamate-glutamate (Glu-Glu) and glutamate-aspartic acid (Glu-Asp), in human sweet taste receptor hT1R2/hT1R3-expressing cells. The sensitivity of sucrose to hT1R2/hT1R3 was significantly attenuated by MSG and umami active peptides but not by umami active nucleotides. Inhibition of sweet receptor activation by MSG and glutamyl peptides is obvious when sweet receptors are activated by sweeteners that target the extracellular domain (ECD) of T1R2, such as sucrose and acesulfame K, but not by cyclamate, which interact with the T1R3 transmembrane domain (TMD). Application of umami compounds with lactisole, inhibitory drugs that target T1R3, exerted a more severe inhibitory effect. The inhibition was also observed with F778A sweet receptor mutant, which have the defect in function of T1R3 TMD. These results suggest that umami peptides affect sweet taste receptors and this interaction prevents sweet receptor agonists from binding to the T1R2 ECD in an allosteric manner, not to the T1R3. This is the first report to define the interaction between umami and sweet taste receptors.  相似文献   

11.
Umami is one of the basic tastes along with sweet, bitter, sour and salty. It is often elicited by amino acids and can provide a palatable flavor for food. With taste epithelium as the sensing element, microelectrodes can be used to evaluate umami taste by biological responses of the tissue. The electrophysiological activities to umami stimuli are measured with a 60-channel microelectrode array (MEA). Local field potential (LFP) recorded by a MEA system showed different temporal characteristics respectively with l-glutamic acid (l-Glu), l-aspartic acid (l-Asp), l-monosodium glutamate (l-MSG) and l-monosodium aspartate (l-MSA), while remarkable differences were observed between amino acids and their sodium salts. Wealso found that a dose-dependent behavior in the increasing concentrations of umami stimulations and a synergistic enhancement between amino acids and purine nucleotides can be detected. The investigation of this evaluation for umami represents a promising approach for distinguishing and evaluating umami tastants.  相似文献   

12.
Behavioral evidence for a role of alpha-gustducin in glutamate taste   总被引:3,自引:0,他引:3  
The taste perception of monosodium glutamate (MSG) is termed 'umami'. Two putative taste receptors for glutamate have been identified, a truncated form of mGluR4 (taste-mGluR4) and the presumed heterodimer T1R1 + T1R3. Both receptors respond to glutamate when expressed in heterologous cells, but the G protein involved is not known. Galpha-Gustducin mediates the transduction of several bitter and sweet compounds; however, its role in umami has not been determined. We used standard two-bottle preference tests on alpha-gustducin knockout (KO) and wildtype (WT) mice to compare preferences for ascending concentrations of MSG and MSG + 5'-inosine monophosphate (IMP). A Latin Square was used to assign the order of tastants presented to each mouse. Statistical comparisons between KO and WT mice revealed that whereas WT mice preferred solutions of MSG and MSG + IMP over water, KO mice showed little preference for these stimuli. Denatonium and sucrose served as control stimuli and, as shown previously, WT mice prefered sucrose and avoided denatonium significantly more than did KO mice. Na?ve mice were also tested, and while prior exposure to taste stimuli influenced the magnitude of the preferences, experience did not change the overall pattern of intake. These data suggest that alpha-gustducin plays a role in glutamate taste.  相似文献   

13.
Behavioral responses to five L-amino acids (Gly, Arg, Leu, Ala,Met) and five related L-glutamate compounds (MSG, MKG, MAG,Gln, GluHCl) were measured using 1-min taste reactivity andstandard 24-h, two-bottle preference tests. Taste reactivitytests measure the immediate pattern of ingestive and aversiveoral motor behavior elicited by direct oral infusion of tastestimuli. By permitting acute observations in non-deprived rats,taste reactivity tests are more sensitive to taste factors thanstandard long-term tests. Three stimulus concentrations of eachcompound were selected by behavioral and electrophysiologicalcriteria. Taste reactivity results often conflicted with standardintake results. In taste reactivity tests both Gly and MSG elicitingestive oral motor responses that increase with stimulus concentrationin the absence of aversive behavior. The opposite responseswere obtained using long-term intake tests; MSG and Gly preferenceratios actually decrease with increasing concentration. Thesedata suggest a reinterpretation of standard, longterm intaketests. Specifically, effects of taste versus post-oral stimulimay be distinguished by contrasting taste reactivity and two-bottlepreference tests. Differences in the pattern of oral motor behaviorselicited by the amino acid and glutamate compounds are alsodiscussed.  相似文献   

14.
We investigated the taste synergy between L-theanine and the flavour enhancer, inosine 5′-monophosphate (IMP), by using a human sensory evaluation. When L-theanine was added to IMP, only the umami taste was enhanced. We then investigated this synergistic effect of L-theanine in mice by gustatory nerve recording. We confirmed the synergism between L-theanine and IMP for the umami taste.  相似文献   

15.
Monosodium glutamate and nucleotides are umami taste substances in animals and have a synergistic effect on each other. We studied the ligand-binding properties of the glutamate receptors in taste epithelial cells isolated from bovine tongue. Specific glutamate binding was observed in an enriched suspension of taste receptor cells in Hanks' balanced salt solution, while no specific glutamate binding was apparent in the absence of divalent ions or when the cells had been depolarized by a high content of potassium in Hanks' balanced salt solution. There was no significant difference between the release of glutamate under depolarized or divalent ion-free conditions and under normal conditions. However, glutamate was easily released from the depolarized cells in the absence of divalent ions. These data suggest that the binding of glutamate to receptors depends on divalent ions, which also have an effect on maintaining binding between glutamate and receptors.  相似文献   

16.
Whole nerve, as well as single fiber, responses in the chorda tympani proper (CT) and glossopharyngeal (NG) nerves of 1- to 7-week-old pigs were recorded during taste stimulation. In the CT acids and in the NG bitter compounds gave the largest responses. Both nerves exhibited large responses to monosodium glutamate (MSG), MSG with guanosine 5'-monophosphate (GMP) and MSG with inositine 5'-monophosphate (IMP) as well as to glycine, xylitol, sucrose, fructose and glucose. Alitame, aspartame, betaine, neohesperedin dihydrochalcone (NHDHC), super-aspartame, saccharin and thaumatin elicited no or little response. Hierarchical cluster analysis of 49 CT fibers separated four major clusters. The M cluster, comprising 28.5% of all fibers, is characterized by strong responses to MSG, KCl, LiCl and NaCl. The responses to NaCl and LiCl were unaffected by amiloride. The H cluster (24.5%) includes units responding principally to acids. The Q cluster (18.5%) responds to quinine hydrochloride (QHCl), sucrose octaacetate (SOA) and salts with amiloride. The S cluster (28.5%) exhibits strong responses to xylitol, glycine and the carbohydrates as well as to MSG alone and to MSG with GMP or IMP. In 31 NG fibers, hierarchical cluster analysis revealed four clusters: the M cluster (10%), responding to MSG and MSG with GMP or IMP; the H cluster (13%), responding to acids; the Q cluster (29%), responding strongly to QHCl, SOA and tilmicosinR; and the S cluster (48%), responding best to xylitol, carbohydrates and glycine but also to the umami compounds. Multidimensional scaling analysis across fiber responses to all stimuli showed the best separation between compounds with different taste qualities when information from both nerves was utilized.  相似文献   

17.
Inosine monophosphate (IMP) and guanosine monophosphate (GMP) elicit an umami taste in humans and synergistically increase the intensity of the umami taste of monosodium glutamate (MSG). Conditioned taste aversion (CTA) studies in rodents indicate that these nucleotides and MSG elicit quite similar tastes, but recent physiological evidence suggests that these nucleotides and MSG may not activate the same population of taste receptors and therefore may not elicit identical taste qualities. This study reports the findings of several behavioral experiments with rats that compared the taste properties of IMP and GMP with each other and with those of MSG. Well-trained rats were able to detect both nucleotides at nanomolar concentrations, but they did not respond to either nucleotide in two-bottle preference tests or brief-access CTA tests at concentrations less than 0.5 mM. Discrimination experiments found that the tastes of these nucleotides could not be discriminated from each other, but both could be discriminated from MSG, even when the taste of Na(+) was controlled. Overall, these experiments indicate the taste properties of the two 5'-ribonucleotides are quite similar to each other, and even though they may elicit an umami sensation, these sensations are not identical to the taste of MSG.  相似文献   

18.
The receptors for mammalian sweet and umami taste   总被引:44,自引:0,他引:44  
Sweet and umami (the taste of monosodium glutamate) are the main attractive taste modalities in humans. T1Rs are candidate mammalian taste receptors that combine to assemble two heteromeric G-protein-coupled receptor complexes: T1R1+3, an umami sensor, and T1R2+3, a sweet receptor. We now report the behavioral and physiological characterization of T1R1, T1R2, and T1R3 knockout mice. We demonstrate that sweet and umami taste are strictly dependent on T1R-receptors, and show that selective elimination of T1R-subunits differentially abolishes detection and perception of these two taste modalities. To examine the basis of sweet tastant recognition and coding, we engineered animals expressing either the human T1R2-receptor (hT1R2), or a modified opioid-receptor (RASSL) in sweet cells. Expression of hT1R2 in mice generates animals with humanized sweet taste preferences, while expression of RASSL drives strong attraction to a synthetic opiate, demonstrating that sweet cells trigger dedicated behavioral outputs, but their tastant selectivity is determined by the nature of the receptors.  相似文献   

19.
In taste bud cells, glutamate may elicit two types of responses, as an umami tastant and as a neurotransmitter. Glutamate applied to apical membrane of taste cells would elicit taste responses whereas glutamate applied to basolateral membrane may act as a neurotransmitter. Using restricted stimulation to apical or basolateral membrane of taste cells, we examined responses of taste cells to glutamate stimulation, separately. Apical application of monosodium glutamate (MSG, 0.3 M) increased firing frequency in some of mouse fungiform taste cells that evoked action potentials. These cells were tested with other basic taste compounds, NaCl (salty), saccharin (sweet), HCl (sour), and quinine (bitter). MSG-sensitive taste cells could be classified into sweet-best (S-type), MSG-best (M-type), and NaCl or other electrolytes-best (N- or E/H-type) cells. Furthermore, S- and M-type could be classified into two sub-types according to the synergistic effect between MSG and inosine-5′-monophosphate (S1, M1 with synergism; S2, M2 without synergism). Basolateral application of glutamate (100 μM) had almost no effect on the mean spontaneous firing rates in taste cells. However, about 10% of taste cells tested showed transient increases in spontaneous firing rates (>mean + 2 standard deviation) after basolateral application of glutamate. These results suggest the existence of multiple types of umami-sensitive taste cells and the existence of glutamate receptor(s) on the basolateral membrane of a subset of taste cells.  相似文献   

20.
The aim of this research project was to investigate umami taste properties of recipes based on Italian culinary tradition and prepared with umami-rich ingredients, focusing on the impact of the preparation and ingredient combination. Gustative profiles were prepared for a traditional Italian dish, tender beef bouillon, usually consumed with pasta stuffed with beef. Four different samples were designed by changing the ingredients (with or without integrating Parmigiano cheese) and the preparation (cooking time) of the recipe. Panelists were rigorously trained for umami taste evaluation using monosodium L-glutamate (MSG) aqueous solutions and were then asked to evaluate umami sensation in tender beef bouillon with or without added Parmigiano Reggiano . A majority of the panelists were able to distinguish correctly umami sensations induced by MSG. The level of umami enhancement induced by Parmigiano Reggiano was clearly perceived by the panelists, and this enhancement positively affected also other basic tastes; whereas the cooking time had no clear effect on the gustative perception.

PRACTICAL APPLICATIONS


In western countries, people do not know much about umami. This taste is defined as the "savoriness" of the glutamate. Umami-taste substances are present in several foods, but whereas the taste of monosodium glutamate and 5' nucleotides can be without difficulty identified in water solutions, which are usually employed for panel training, the ability to identify this primary taste decreases enormously in more complex matrices like food. This study describes a procedure for screening and training sensory panels and could serve as a guide in teaching panelists to recognize and quantify the umami taste in a multistimuli matrix like a food recipe or product.
It also provides a practical application in a recipe in which the umami taste is modulated by the culinary preparation and ingredients.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号