首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Understanding the mechanisms of stem cell proliferation, self-renewal and differentiation is fundamental for stem cell biology. Stem cells proliferate by either symmetric division or asymmetric division. Through asymmetric division, stem cells self-renew and differentiate to mature cells. Stem cells could also divide symmetrically to give rise to differentiated cells. Besides intrinsic cues, proliferation and self-renewal of most stem cell types also rely on extrinsic signals from niche or surrounding cells. Failure in any of these factors may result in disturbed stem cell proliferation, self-renewal or differentiation and/or generate cancer stem cells that drive cancer development.  相似文献   

2.
近年来成体干细胞研究进展迅速。肺干细胞和肺癌干细胞在表面标志、分离方法和功能研究等方面也取得了一定进展。在肺组织中,肺干细胞维持着肺上皮的更新和稳定,肺脏不同解剖结构存在不同的干细胞,主要的肺干细胞有气管—支气管干细胞、细支气管干细胞、细支气管肺泡干细胞和肺泡干细胞等,不同干细胞特异表面标志也不同。根据肿瘤干细胞理论,目前研究认为肺癌的发生与肺癌干细胞有关,肺癌干细胞来源于其对应肺干细胞的恶性转化。肺癌干细胞特异标志研究主要集中在侧群细胞、CD133和醛脱氢酶等。与其他成体干细胞相似,肺癌干细胞维持自我更新以及分化能力的信号通路主要有Wnt、Hedgehog和Notch通路等。肺癌干细胞与肺癌的发生、发展、转移、治疗反应及预后关系,也取得了一定的进展。该文对肺干细胞和肺癌干细胞研究进展作简要综述。  相似文献   

3.
干细胞是一类具有自我更新和多向分化潜能的细胞群体。越来越多的研究表明,干细胞异常分化可导致肿瘤。并且在肿瘤组织中存在部分细胞,它们具有干细胞的多种特性,被称为肿瘤干细胞(cancer stem cell,CSC)。肿瘤干细胞理论的提出,为肿瘤的治疗与研究提供了新的方向。本文综述了正常干细胞异常分化、肿瘤干细胞的存在和特性、肿瘤干细胞靶向治疗的前景及所面临的问题等方面的研究进展。  相似文献   

4.
The emergence of cancer stem cell theory has profound implications for cancer chemoprevention and therapy. Cancer stem cells give rise to the tumor bulk through continuous self-renewal and differentiation. Understanding the mechanisms that regulate self-renewal is of greatest importance for discovery of anticancer drugs targeting cancer stem cells. Naturally occurring dietary compounds have received increasing attention in cancer chemoprevention. The anticancer effects of many dietary components have been reported for both in vitro and in vivo studies. Recently, a number of studies have found that several dietary compounds can directly or indirectly affect cancer stem cell self-renewal pathways. Herein we review the current knowledge of most common natural dietary compounds for their impact on self-renewal pathways and potential effect against cancer stem cells. Three pathways (Wnt/β-catenin, Hedgehog and Notch) are summarized for their functions in self-renewal of cancer stem cells. The dietary compounds, including curcumin, sulforaphane, soy isoflavone, epigallocatechin-3-gallate, resveratrol, lycopene, piperine and vitamin D3, are discussed for their direct or indirect effect on these self-renewal pathways. Curcumin and piperine have been demonstrated to target breast cancer stem cells. Sulforaphane has been reported to inhibit pancreatic tumor-initiating cells and breast cancer stem cells. These studies provide a basis for preclinical and clinical evaluation of dietary compounds for chemoprevention of cancer stem cells. This may enable us to discover more preventive strategies for cancer management by reducing cancer resistance and recurrence and improving patient survival.  相似文献   

5.
Dvorak P  Dvorakova D  Hampl A 《FEBS letters》2006,580(12):2869-2874
Cancer stem cells are cancer cells that originate from the transformation of normal stem cells. The most important property of any stem cell is the ability to self-renew. Through this property, there are striking parallels between normal stem cells and cancer stem cells. Both cell types share various markers of “stemness”. In particular, normal stem cells and cancer stem cells utilize similar molecular mechanisms to drive self-renewal, and similar signaling pathways may induce their differentiation.The fibroblast growth factor 2 (FGF-2) pathway is one of the most significant regulators of human embryonic stem cell (hESC) self-renewal and cancer cell tumorigenesis. Here we summarize recent data on the effects of FGF-2 and its receptors on hESCs and leukemic stem/progenitor cells. Also, we discuss the similarities of these findings with stem cell renewal and differentiation phenotypes.  相似文献   

6.
Spermatogonial stem cells, infertility and testicular cancer   总被引:1,自引:0,他引:1  
The spermatogonial stem cells (SSCs) are responsible for the transmission of genetic information from an individual to the next generation. SSCs play critical roles in understanding the basic reproductive biology of gametes and treatments of human infertility. SSCs not only maintain normal spermatogenesis, but also sustain fertility by critically balancing both SSC self-renewal and differentiation. This self-renewal and differentiation in turn is tightly regulated by a combination of intrinsic gene expression within the SSC as well as the extrinsic gene signals from the niche. Increased SSCs self-renewal at the expense of differentiation result in germ cell tumours, on the other hand, higher differentiation at the expense of self-renewal can result in male sterility. Testicular germ cell cancers are the most frequent cancers among young men in industrialized countries. However, understanding the pathogenesis of testis cancer has been difficult because it is formed during foetal development. Recent studies suggest that SSCs can be reprogrammed to become embryonic stem (ES)-like cells to acquire pluripotency. In the present review, we summarize the recent developments in SSCs biology and role of SSC in testicular cancer. We believe that studying the biology of SSCs will not only provide better understanding of stem cell regulation in the testis, but eventually will also be a novel target for male infertility and testicular cancers.  相似文献   

7.
Recent findings suggest the possibility that tumors originate from cancer cells with stem cell properties. The cancer stem cell (CSC) hypothesis provides an explanation for why existing cancer therapies often fail in eradicating highly malignant tumors and end with tumor recurrence. Although normal stem cells and CSCs both share the capacity for self-renewal and multi-lineage differentiation, suggesting that CSC may be derived from normal SCs, the cellular origin of transformation of CSCs is debatable. Research suggests that the tightly controlled balance of self-renewal and differentiation that characterizes normal stem cell function is dis-regulated in cancer. Additionally, recent evidence has linked an embryonic stem cell (ESC)-like gene signature with poorly differentiated high-grade tumors, suggesting that regulatory pathways controlling pluripotency may in part contribute to the somatic CSC phenotype. Here, we introduce expression profile bioinformatic analyses of mouse breast cells with CSC properties, mouse embryonic stem (mES) and induced pluripotent stem (iPS) cells with an emphasis on how study of pluripotent stem cells may contribute to the identification of genes and pathways that facilitate events associated with oncogenesis. Global gene expression analysis from CSCs and induced pluripotent stem cell lines represent an ideal model to study cancer initiation and progression and provide insight into the origin cancer stem cells. Additionally, insight into the genetic and epigenomic mechanisms regulating the balance between self-renewal and differentiation of somatic stem cells and cancer may help to determine whether different strategies used to generate iPSCs are potentially safe for therapeutic use.  相似文献   

8.
Neural stem cells: balancing self-renewal with differentiation   总被引:3,自引:0,他引:3  
Stem cells are captivating because they have the potential to make multiple cell types yet maintain their undifferentiated state. Recent studies of Drosophila and mammalian neural stem cells have shed light on how stem cells regulate self-renewal versus differentiation and have revealed the proteins, processes and pathways that all converge to regulate neural progenitor self-renewal. If we can better understand how stem cells balance self-renewal versus differentiation, we will significantly advance our knowledge of embryogenesis, cancer biology and brain evolution, as well as the use of stem cells for therapeutic purposes.  相似文献   

9.
Stem cells have two common properties: the capacity for self-renewal and the potential to differentiate into one or more specialized cell types. In general, stem cells can be divided into two broad categories: adult (somatic) stem cells and embryonic stem cells. Recent evidence suggested that tumors may contain "cancer stem cells" with indefinite potential for self-renewal. In this review, we will focus on the molecular mechanisms regulating embryonic stem cell self-renewal and differentiation, and discuss how these mechanisms may be relevant in cancer cells.  相似文献   

10.
肿瘤组织中存在一小群能够自我更新、增殖和分化,对肿瘤的发生、发展、复发、转移起决定作用的细胞,即肿瘤干细胞(cancer stem cells,CSCs)。在传统理论方法已不能攻克癌症的情况下,肿瘤干细胞理论为我们重新认识肿瘤的起源和本质提供了新的方向和视角。从20世纪50年代至今,随着生物技术的发展,肿瘤干细胞理论经历了从设想到验证的漫长历程。但该理论自提出之日起便受到来自各方面不同观点的质疑。当今针对肿瘤干细胞癌症治疗主要集中在靶向问题上。因此,寻找特异的肿瘤干细胞标志物,探索肿瘤干细胞与周围微环境间的复杂关系以及发现调控其功能的关键信号通路成为当前研究的热点。  相似文献   

11.
肿瘤的发生和发展源于一小部分具有自我更新能力的肿瘤干细胞。胚胎干细胞也具有自我更新和多向分化的特性。胚胎干细胞特异的基质微环境能够提供干细胞正常生长的调控分子,在细胞不断更新的情况下,使增殖和分化达到平衡。受胚胎干细胞调节的基质或胚胎微环境作用于肿瘤细胞,可以使肿瘤细胞获得更多的分化表型,显著降低其恶性程度,抑制肿瘤细胞的侵袭行为。进一步的分子机制研究发现,在肿瘤细胞中高表达的Nodal蛋白会抑制肿瘤细胞分化,而胚胎干细胞分泌的糖基化Lefty蛋白可以负反馈调节Nodal蛋白的作用,从而降低肿瘤细胞的恶性程度。利用组织工程来模拟胚胎干细胞微环境,保留Lefty蛋白,从而逆转肿瘤的方法具有广阔的前景。  相似文献   

12.
The mammary gland is a highly regenerative organ that can undergo multiple cycles of proliferation, lactation and involution, a process controlled by stem cells. The last decade much progress has been made in the identification of signaling pathways that function in these stem cells to control self-renewal, lineage commitment and epithelial differentiation in the normal mammary gland. The same signaling pathways that control physiological mammary development and homeostasis are also often found deregulated in breast cancer. Here we provide an overview on the functional and molecular identification of mammary stem cells in the context of both normal breast development and breast cancer. We discuss the contribution of some key signaling pathways with an emphasis on Notch receptor signaling, a cell fate determination pathway often deregulated in breast cancer. A further understanding of the biological roles of the Notch pathway in mammary stem cell behavior and carcinogenesis might be relevant for the development of future therapies.  相似文献   

13.
Therapeutic implications of cancer stem cells   总被引:31,自引:0,他引:31  
Most cancers comprise a heterogenous population of cells with marked differences in their proliferative potential as well as the ability to reconstitute the tumor upon transplantation. Cancer stem cells are a minor population of tumor cells that possess the stem cell property of self-renewal. In addition, dysregulation of stem cell self-renewal is a likely requirement for the development of cancer. This new model for cancer will have significant ramifications for the way we study and treat cancer. In addition, through targeting the cancer stem cell and its dysregulated self-renewal, our therapies for treating cancer are likely to improve.  相似文献   

14.
15.
肿瘤干细胞是存在于肿瘤组织中的具有自我更新、增殖、分化的部分细胞群,对肿瘤的发生、发展有十分重要的作用. 肿瘤干细胞特异的表面分子及其异常活化的信号通路,是其区别于其他肿瘤细胞的特性.寻找和鉴定特异的肿瘤干细胞的表面标志物,从而识别肿瘤组织中的肿瘤干细胞,并进行相关信号调控机制研究,是肿瘤早期诊断及肿瘤干细胞靶向治疗的关键. 本文简要概述了肿瘤干细胞相关的表面标志物及信号通路的研究进展,旨在为进一步开展针对肿瘤干细胞的抗体靶向治疗提供新思路.  相似文献   

16.
Stem cells and progenitor cells are the cells of origin for multi-cellular organisms and organs. They play key roles during development and their dysregulation gives rise to human diseases such as cancer. The recent development of induced pluripotent stem cell (iPSC) technology which converts somatic cells to stem-like cells holds great promise for regenerative medicine. Nevertheless, the understanding of proliferation, differentiation, and self-renewal of stem cells and organ-specific progenitor cells is far from clear. Recently, the Hippo pathway was demonstrated to play important roles in these processes. The Hippo pathway is a newly established signaling pathway with critical functions in limiting organ size and suppressing tumorigenesis. This pathway was first found to inhibit cell proliferation and promote apoptosis, therefore regulating cell number and organ size in both Drosophila and mammals. However, in several organs, disturbance of the pathway leads to specific expansion of the progenitor cell compartment and manipulation of the pathway in embryonic stem cells strongly affects their self-renewal and differentiation. In this review, we summarize current observations on roles of the Hippo pathway in different types of stem cells and discuss how these findings changed our view on the Hippo pathway in organ development and tumorigenesis.  相似文献   

17.
Balancing self-renewal and differentiation of stem cells is an important issue in stem cell and cancer biology. Recently, the Drosophila neuroblast (NB), neural stem cell has emerged as an excellent model for stem cell self-renewal and tumorigenesis. It is of great interest to understand how defects in the asymmetric division of neural stem cells lead to tumor formation. Here, we review recent advances in asymmetric division and the self-renewal control of Drosophila NBs. We summarize molecular mechanisms of asymmetric cell division and discuss how the defects in asymmetric division lead to tumor formation. Gain-of-function or loss-of-function of various proteins in the asymmetric machinery can drive NB overgrowth and tumor formation. These proteins control either the asymmetric protein localization or mitotic spindle orientation of NBs. We also discuss other mechanisms of brain tumor suppression that are beyond the control of asymmetric division.  相似文献   

18.
Developments in adult stem cell (ASC) potentiation have contributed to excitement in the field of stem cell-based therapy. The use of ASCs not only increases therapeutic treatment possibilities but successful use of multipotent cells for gene therapy has been demonstrated in animal models [1]. Concurrent ability of stem cells (SCs) to either contribute to disease development, as identified in cancer stem cells (CSCs), or to replace diseased tissue by induced differentiation using selected growth factors, has highlighted the intricate molecular and cellular mechanisms. Adipose derived stem cells (ADSCs) are capable of self-renewal and respond well to induced differentiation [2]. Auto-immunity and transplant rejection may become minor limitations when selective induction of immunological nonresponsiveness to specific antigens or tissues become possible using autologous cell sources [3]. CSCs initiate tumorogenesis, can generate differentiated daughter cells or undergo self-renewal while thought to instigate tumour regeneration post-treatment. Therapy targeting CSCs has failed to provide feasible alternatives to conventional cancer treatment. Low intensity laser irradiation (LILI), induce a biostimulatory response in several tissue types in addition to a dose-response effect to the detriment of cellular degeneration. Potential of LILI to induce CSC differentiation and subsequent cytotoxic therapy to prevent tumour regeneration is explored in this mini-review.  相似文献   

19.

Background

The diversity of cell types and tissue types that originate throughout development derives from the differentiation potential of embryonic stem cells and somatic stem cells. While the former are pluripotent, and thus can give rise to a full differentiation spectrum, the latter have limited differentiation potential but drive tissue remodeling. Additionally cancer tissues also have a small population of self-renewing cells with stem cell properties. These cancer stem cells may arise through dedifferentiation from non-stem cells in cancer tissues, illustrating their plasticity, and may greatly contribute to the resistance of cancers to chemotherapies.

Scope of review

The capacity of the different types of stem cells for self-renewal, the establishment and maintenance of their differentiation potential, and the selection of differentiation programs are greatly defined by the interplay of signaling molecules provided by both the stem cells themselves, and their microenvironment, the niche. Here we discuss common and divergent roles of TGF-β family signaling in the regulation of embryonic, reprogrammed pluripotent, somatic, and cancer stem cells.

Major conclusions

Increasing evidence highlights the similarities between responses of normal and cancer stem cells to signaling molecules, provided or activated by their microenvironment. While TGF-β family signaling regulates stemness of normal and cancer stem cells, its effects are diverse and depend on the cell types and physiological state of the cells.

General significance

Further mechanistic studies will provide a better understanding of the roles of TGF-β family signaling in the regulation of stem cells. These basic studies may lead to the development of a new therapeutic or prognostic strategies for the treatment of cancers. This article is part of a Special Issue entitled Biochemistry of Stem Cells.  相似文献   

20.
表皮干细胞研究进展   总被引:4,自引:0,他引:4  
王丽娟  王友亮  杨晓 《遗传》2010,32(3):198-204
哺乳动物表皮中包含有多种不同类型的表皮干细胞, 它们共同维持了表皮组织结构的稳态并在皮肤创伤的修复中起重要作用。表皮干细胞具备干细胞两大基本特征: 自我更新和分化, 两者间平衡的破坏通常是皮肤肿瘤和其他皮肤疾病的根源。文章着重叙述了表皮干细胞存在的证据、两大基本特征、分裂模式、调节表皮干细胞的信号通路以及维持其稳态的微观和宏观环境。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号