首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The fine structure of the centriolar system was studied on serial sections of 90 endothelial cells of human aorta (50 to 60 years) in regions without atherosclerotic platelets and with fibrous and atheromatous platelets and of 30 endothelial cells of human embryonic aorta (22-24 weeks). The vast majority (95%) of endothelial cells of the atheromatous platelets were shown to have a primary cilium over 1 micron long which gives on the basal surface in all the cells. In the regions without platelets and with fibrous platelets a cilium was observed in about 20% of cells and it gives in the vessel lumen. Endothelial cells with a cilium fully embedded in the cytoplasm and with abnormal cilium structure were found in the embryonic aorta. A suggestion is put forward that cilia of the endothelial cells of embryonic aorta and those of adult aorta differ by the mechanism of their formation and can have different functions.  相似文献   

2.
Primary cilia are microtubule based sensory organelles that play an important role in maintaining cellular homeostasis. Malfunctioning results in a number of abnormalities, diseases (ciliopathies) and certain types of cancer. Morphological and biochemical knowledge on cilia/flagella, (early) ciliogenesis and intraflagellar transport is often obtained from model systems (e.g. Chlamydomonas) or from multi ciliary cells like lung or kidney epithelium.In this study endothelial cells in isolated human umbilical veins (HUVs) and cultured human umbilical vein endothelial cells (HUVECs) are compared and used to study primary ciliogenesis. By combining fluorescence microscopy, SEM, 2D and 3D TEM techniques we found that under the tested culturing conditions 60% of cobblestone endothelial cells form a primary cilium. Only a few of these cilia are present (protruding) on the endothelial cell surface, meaning that most primary cilia are in the cytoplasm (non-protruding). This was also observed in situ in the endothelial cells in the umbilical vein. The exact function(s?) of these non-protruding cilia remains unclear.Ultra-structural analysis of cultured HUVECs and the endothelial layer of the human umbilical veins reveal that there are: vesicles inside the ciliary pocket during the early stages of ciliogenesis; tubules/vesicles from the cytoplasm fuse with the ciliary sheath; irregular axoneme patterns, and two round, membranous vesicles inside the basal body.We conclude that cobblestone cultured HUVECs are comparable to the in vivo epithelial lining of the umbilical veins and therefore provide a well defined, relatively simple human model system with a reproducible number of non-protruding primary cilia for studying ciliogenesis.  相似文献   

3.
Hemopoietic precursor cells in the intima of the atheromatous human aorta   总被引:1,自引:0,他引:1  
Granulocyte-macrophage progenitor cells (CFU-GM) were found in the intima of human atheromatous aorta. Granulocyte-macrophage colonies were recovered on the 14th day of culturing of intimal cells suspensions on agar. Medium conditioned by normal leukocytes in the presence of phytohaemagglutinin was used as a source of the colony-stimulating factor. Grossly normal and atheromatous intima contained different number of CFU-GM. No GM were recovered from fibrous plaques. By light and electron microscopies, the injured aortic intima contained the clusters of blood-born cells that were at various stages of granulocytopoiesis (including blasts and mature cells) and poorly differentiated lymphocyte-like cells. The results obtained suggest that in human aortic intima proliferation and differentiation of CFU-GM occur at early stages of atherogenesis, prior to fibrous plaque formation.  相似文献   

4.
α-Smooth muscle actin-positive endothelial cells have not been found in adult aortic endothelium except valve leaflets. Here, using en face immunostaining method, we identified α-smooth muscle actin-positive endothelial cells in the luminal surface of rat, mouse and human thoracic aortas. These cells express both endothelial markers and definite smooth muscle cell markers and were only occasionally observed in thoracic aorta of wild type mice and rats. Their density did not increase with aging. Given that α-smooth muscle actin-positive endothelial cells express low level of vascular endothelial-cadherin that is important for the maintenance of cell contact, these cells were frequently detected in the thoracic aorta of 5-week-old apolipoprotein-E deficient mice. In 20- to 24-week-old apolipoprotein-E deficient mice, marked accumulation of α-smooth muscle actin-positive endothelial cells was observed especially in the luminal surface of atheromatous plaques. Our findings indicate the existence of α-smooth muscle actin-positive endothelial cells in adult aortic endothelium and the possible association with progression of atherosclerosis.  相似文献   

5.
It was recently reported that inducible nitric oxide synthase was expressed in advanced atheromatous plaques. So we investigated the effect of NO or peroxynitrite reactive product of NO or O(2)(-) released by iNOS induced in macrophages or T lymphocytes on inflammatory cells in atheromatous plaques of human coronary arteries by immunohistochemistry. We found that iNOS was expressed in T lymphocytes and macrophages in T lymphocytes and macrophages coexisted advanced atheromatous areas. Most of the smooth muscle cells are not coexisted with T lymphocytes. We could not find iNOS in those smooth muscle cells. Only a small number of iNOS-positive smooth muscle cells were found close to T lymphocytes and macrophages. Markers for apoptotic cells induced in situ terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) showed that many apoptotic T lymphocytes and macrophages existed near iNOS induced cells. Fas and Fas ligand were expressed in almost same areas that iNOS was expressed. By double-label immunostaining, Fas was expressed in T lymphocytes but Fas ligand was expressed in macrophages and in some T lymphocytes. These results suggest that NO from iNOS induces Fas and Fas ligand-mediated apoptosis and associates with regression of atherosclerosis. On the other hand, nitrotyrosine was detected wider areas than iNOS. So peroxynitrite from iNOS damages cells and tissues widely and may associate with progression of atherosclerosis. These results suggest an important role of iNOS in mediating both regressive changes and progressive change in atheromatous plaques.  相似文献   

6.
Primary cilia are microtubule‐based structures present on most mammalian cells that are important for intercellular signaling. Cilia are present on a subset of endothelial cells where they project into the vessel lumen and are implicated as mechanical sensors of blood flow. To test the in vivo role of endothelial cilia, we conditionally deleted Ift88, a gene required for ciliogenesis, in endothelial cells of mice. We found that endothelial primary cilia were dispensable for mammalian vascular development. Cilia were not uniformly distributed in the mouse aorta, but were enriched at vascular branch points and sites of high curvature. These same sites are predisposed to the development of atherosclerotic plaques, prompting us to investigate whether cilia participate in atherosclerosis. Removing endothelial cilia increased atherosclerosis in Apoe?/? mice fed a high‐fat, high‐cholesterol diet, indicating that cilia protect against atherosclerosis. Removing endothelial cilia increased inflammatory gene expression and decreased eNOS activity, indicating that endothelial cilia inhibit pro‐atherosclerotic signaling in the aorta.  相似文献   

7.
The structure of centrioles in endothelial cells of embryonic (22-24 weeks old) and definitive (2, 14-17, and 30-40 years) human aorta in situ and also in aortic endothelial cells dividing in organ and cell cultures (donor age 30-40 years) was studied. It was found that in the endothelial cells from definitive aorta the lengths of mother centrioles vary from 0.5 to 2 microns, whereas the length of daughter centrioles remains constant (0.4-0.5 microns). The distal part of the cylinder of long mother centrioles consists of microtubule doublets. In aorta of donors 30-40 years old in multinucleated cells and in one of 30 single-nucleated cells analyzed, C-shaped long centrioles were seen. These centrioles exhibit a doublet organization along all their length. Mitotic cells in organ and cell culture had a nonequal structure of spindle poles: at one pole, the long mother centriole was seen, while at the other a mother centriole of standard size was found. In such cells of organ culture long centrioles make contact with the remnant of primary cilia until the end of anaphase. In cell culture mitotic cells are also observed containing C-shaped centrioles. In these cells the number of mother centrioles is odd and their number is not equal to the number of daughter centrioles. The possible mechanism for transformation of endothelial centrioles and its role in the control of cell-cycle progression are discussed.  相似文献   

8.
The presence of primary cilia in corneal endothelial cells of a range of species from six non-mammalian vertebrate classes (Agnatha, Elasmobranchii, Amphibia, Teleostei, Reptilia and Aves) is examined by scanning and transmission electron microscopy. Our aim is to assess whether these non-motile cilia protruding into the anterior chamber of the eye are a consistent phylogenetic feature of the corneal endothelium and if a quantitative comparison of their morphology is able to shed any new light on their function. The length (0.42-3.80 microm) and width (0.12-0.44 microm) of the primary cilia varied but were closely allied with previous studies in mammals. However, interspecific differences such as the presence of a terminal swelling in the Teleostei and Amphibia suggest there are functional differences. Approximately one-third of the endothelial cells possess cilia but the extent of protrusion above the cell surface varies greatly, supporting a dynamic process of retraction and elongation. The absence of primary cilia in primitive vertebrates (Agnatha and Elasmobranchii) that possess other mechanisms to control corneal hydration suggests an osmoregulatory and/or chemosensory function.  相似文献   

9.
Ultrastructural examination of bovine mammary tissues revealed the presence of 9+0 or primary cilia protruding from surfaces of alveolar epithelial and myoepithelial cells. Cilia of epithelial cells protruded approximately 1200 nm into lumina of alveoli and arose from a basal body centriole, the associated centriole of the diplosome, and an accessory rootlet system. Cilia on epithelial cells were more frequently observed than cilia on myoepithelial cells. Occasional cilia made contact with macrophages in the alveolar lumen. The structures were more commonly found in tissues from nonlactating cows, and most were observed in the ventral portion of the mammary gland.  相似文献   

10.
We identified primary cilia and centrosomes in cultured human umbilical vein endothelial cells (HUVEC) by antibodies to acetyl-alpha-tubulin and capillary morphogenesis gene-1 product (CMG-1), a human homologue of the intraflagellar transport (IFT) protein IFT-71 in Chlamydomonas. CMG-1 was present in particles along primary cilia of HUVEC at interphase and around the oldest basal body/centriole at interphase and mitosis. To study the response of primary cilia and centrosomes to mechanical stimuli, we exposed cultured HUVEC to laminar shear stress (LSS). Under LSS, all primary cilia disassembled, and centrosomes were deprived of CMG-1. We conclude that the exposure to LSS ends the IFT in cultured endothelial cells.  相似文献   

11.
6-month hypercholesterol diet made it possible to obtain an adequate model of atherosclerosis in inbred rats. The model was characterized by lipoidosis and fibrous plaques which occupied half of the area of the aorta and coronary arteries, as well as secondary fibrosis of other organs. During atherogenesis changes in endothelial and myocyte cells appear, accumulation of acid glycosaminoglycans takes place, lipoidosis and elastofibrosis progress up to collagenization and hyalinosis of the arterial wall. Fibro-myocyte plaques are transformed into fibro-atheromatous plaques. Upon drug therapy with vegetative saponins and furastonolic glycosides fibrous lesions did not regress, but delipidization and translocation of glycosaminoglycans were observed in 30% of the area of the affected arteries, and elastofibrosis and changes in endothelial and myocyte cells were decreased. Long-term therapy with vegetative drugs produced a regression of the experimental atherosclerosis.  相似文献   

12.
The expression of cell cytoskeleton proteins in atheromatous plaques of human aorta was investigated using double immunofluorescence technique and a set of antibodies. It was found that in 4 out of 12 plaques some smooth muscle cells (SMC) were stained by monoclonal antibodies to desmin. No such cells were detected in apparently unaffected aortic intima. In addition to typical SMC and these cells, the cells unstained by antisera to smooth muscle myosin but reacting with monoclonal antibodies to vimentin and SMC surface were revealed in all plaques adjacent to the central fatty mass.  相似文献   

13.
Cardiovascular and cerebrovascular diseases, such as coronary heart disease and stroke, caused by atherosclerosis have become the “number one killer”, seriously endangering human health in developing and developed countries. Atherosclerosis mainly occurs in large and medium-sized arteries and involves intimal thickening, accumulation of foam cells, and formation of atheromatous plaques. Autophagy is a cellular catabolic process that has evolved to defend cells from the turnover of intracellular molecules. Autophagy is thought to play an important role in the development of plaques. This review focuses on studies on autophagy in cells involved in the formation of atherosclerotic plaques, such as monocytes, macrophages, endothelial cells, dendritic cells, and vascular smooth muscle cells, indicating that autophagy plays an important role in plaque development. We mainly discuss the roles of autophagy in these cells in maintaining the stability of atherosclerotic plaques, providing a reference for the next steps to unravel the mechanisms of atherogenesis.  相似文献   

14.
Atherosclerosis is a progressive process with potentially devastating consequences and has been identified as the leading cause of morbidity and mortality, especially in the industrial countries. The underlying mechanisms include endothelial dysfunction, lipid accumulation and enhanced inflammatory involvement resulting in plaque disruption or plaque erosion and subsequent thrombosis. However, it has been made evident, that the majority of rupture prone plaques that produce acute coronary syndromes are not severely stenotic. Conversely, lipid-rich plaques with thin fibrous cap, heavily infiltrated by inflammatory cells have been shown to predispose to rupture and thrombosis, independently of the degree of stenosis. Therefore, given the importance of plaque composition, a continuously growing interest in the development and improvement of diagnostic modalities will promptly and most importantly, accurately detect and characterize the high-risk atheromatous plaque. Use of these techniques may help risk stratification and allow the selection of the most appropriate therapeutic approach.  相似文献   

15.
To develop an adequate animal model for atherosclerosis in large vessels of patients with diabetes, i.e. diabetic macroangiopathy, we induced diabetes in APA hamsters with a single injection of streptozotocin (SZ) and examined the aorta histopathologically and immunohistochemically. As a result, hyperglycemia and hyperlipidemia were continuously observed for 26 weeks after the SZ injection (WAI) in APA hamsters. Fatty streaks characterized by a subendothelial accumulation of many foam cells were observed, limited to the aortic arches as early as 6 WAI. In addition to larger fatty streaks developing with the duration of diabetes, fibrous plaques and plaques containing calcium deposits or cholesterol clefts developed at 26 WAI. These lesions are generally similar to the atheromatous lesions developed in humans. Moreover, depositions of apolipoprotein E and advanced glycation end-products immunohistochemically detected in the lesions were very similar to those found in humans. The diabetic APA hamster is therefore considered to be a useful model for studying the formation of atheromatous lesions in diabetic patients.  相似文献   

16.
A new technique which brilliantly colors collagen fibers in a field of polarized light reveals that during mid-life the smooth muscle cells in the tunica media of the human aorta begin to disappear. The connective tissue is divided between two regions; one below the subintimal layer and the other under the adventitia. Fine collagen fibers extend upward from the former into the subintima and beyond into the intima and the overlying atheromatous plaques of the aging aorta. Thus, the source of fibrous thickening of the vessel is not confined solely to the intimal layer; at least, a portion of the total collagen content arises deep within the aortic wall.  相似文献   

17.
Primary cilium development along with other components of the centrosome in mammalian cells was analysed ultrastructurally and by immunofluorescent staining with anti-acetylated tubulin antibodies. We categorized two types of primary cilia, nascent cilia that are about 1microm long located inside the cytoplasm, and true primary cilia that are several microm long and protrude from the plasma membrane. The primary cilium is invariably associated with the older centriole of each diplosome, having appendages at the distal end and pericentriolar satellites with cytoplasmic microtubules emanating from them. Only one cilium per cell is formed normally through G(0), S and G(2)phases. However, in some mouse embryo fibroblasts with two mature centrioles, bicilates were seen. Primary cilia were not observed in cultured cells where the mature centriole had no satellites and appendages (Chinese hamster kidney cells, line 237, some clones of l-fibroblasts). In contrast to primary cilia, striated rootlets were found around active and non-active centrioles with the same frequency. In proliferating cultured cells, a primary cilium can be formed several hours after mitosis, in fibroblasts 2-4 h after cell division and in PK cells only during the S-phase. In interphase cells, formation of the primary cilium can be stimulated by the action of metabolic inhibitors and by reversed depolymerization of cytoplasmic microtubules with cold or colcemid treatments. In mouse renal epithelial cells in situ, the centrosome was located near the cell surface and mature centrioles in 80% of the cells had primary cilium protruding into the duct lumen. After cells were explanted and subcultured, the centrosome comes closer to the nucleus and the primary cilium was depolymerized or reduced. Later primary cilia appeared in cells that form islets on the coverslip. However, the centrosome in cultured ciliated cells was always located near the cell nucleus and primary cilium never formed a characteristic distal bulb. A sequence of the developmental stages of the primary cilium is proposed and discussed. We also conclude that functioning primary cilium does not necessarily operate in culture cells, which might explain some of the contradictory data on cell ciliation in vitro reported in the literature.  相似文献   

18.
A single primary cilium is found in chondrocytes and other connective tissue cells. We have previously shown that extracellular matrix (ECM) macromolecules such as collagen fibers closely associate with chondrocyte primary cilia, and their points of contact are characterized by electron-opaque plaques suggesting a direct link between the ECM and the cilium. This study examines the expression of receptors for ECM molecules on chondrocyte primary cilia. Embryonic chick sterna were fluorescently labeled with antibodies against alpha and beta integrins, NG2, CD44, and annexin V. Primary cilia were labeled using acetylated alpha-tubulin antibody. Expression of ECM receptors was examined on chondrocyte plasma membranes and their primary cilia using immunofluorescence and confocal microscopy. All receptors examined showed a punctate distribution on the plasma membrane. alpha2, alpha3, and beta1 integrins and NG2 were also present on primary cilia, whereas annexin V and CD44 were excluded. The number of receptor-positive cilia varied from 8/50 for NG2 to 43/50 for beta1 integrin. This is the first study to demonstrate the expression of integrins and NG2 on chondrocyte primary cilia. The data strongly suggest that chondrocyte primary cilia have the necessary machinery to act as mechanosensors, linking the ECM to cytoplasmic organelles responsible for matrix production and secretion.  相似文献   

19.
Blood vessel homeostasis and endothelial cell survival depend on proper signalling through angiopoietin receptors such as the receptor tyrosine kinases Tie-1 and Tie-2. We have studied the presence and subcellular localization of these receptors in murine female reproductive organs using confocal microscopy analysis of antibody stained tissue sections of ovary and oviduct. We show that Tie-2 principally localizes to primary cilia of the surface epithelium of the ovary, bursa and extra-ovarian rete ducts as well as to plasma membranes of ovarian theca and endothelial cells. Primary cilia of follicular granulosa cells were negative. Further, Tie-1 and Tie-2 localized to motile cilia of the oviduct. Western blotting detection and immunolocalization of anti-Tie-2 in ovary and oviduct were abolished by administration of an anti-Tie-2 blocking peptide, confirming antibody specificity. In a series of immunohistochemical analysis on human ovarian tissues we also observed a unique localization of Tie-2 to the primary cilia of ovarian surface epithelium. These observations are the first to show ciliary localization of angiopoietin receptors. Our results support the hypothesis that cilia of the female reproductive organs play a novel and important sensory role in relaying physiochemical changes from the extracellular environment to epithelial cells of the oviduct, the ovary and extra-ovarian tissues.  相似文献   

20.
Cilia are mechanosensing organelles that communicate extracellular signals into intracellular responses. Altered functions of primary cilia play a key role in the development of various diseases including polycystic kidney disease. Here, we show that endothelial cells from the oak ridge polycystic kidney (Tg737(orpk/orpk) ) mouse, with impaired cilia assembly, exhibit a reduction in the actin stress fibers and focal adhesions compared to wild-type (WT). In contrast, endothelial cells from polycystin-1 deficient mice (pkd1(null/null) ), with impaired cilia function, display robust stress fibers, and focal adhesion assembly. We found that the Tg737(orpk/orpk) cells exhibit impaired directional migration and endothelial cell monolayer permeability compared to the WT and pkd1(null/null) cells. Finally, we found that the expression of heat shock protein 27 (hsp27) and the phosphorylation of focal adhesion kinase (FAK) are downregulated in the Tg737(orpk/orpk) cells and overexpression of hsp27 restored both FAK phosphorylation and cell migration. Taken together, these results demonstrate that disruption of the primary cilia structure or function compromises the endothelium through the suppression of hsp27 dependent actin organization and focal adhesion formation, which may contribute to the vascular dysfunction in ciliopathies.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号