首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Cholesterol sulfate is a component of several biological membranes. In erythrocytes, cholesterol sulfate inhibits hypotonic hemolysis, while in sperm, it can decrease fertilization efficiency. We have found cholesterol sulfate to be a potent inhibitor of Sendai virus fusion to both human erythrocyte and liposomal membranes. Cholesterol sulfate also raises the bilayer to hexagonal phase transition temperature of dielaidoyl phosphatidylethanolamine as demonstrated by differential scanning calorimetry and 31P nuclear magnetic resonance spectrometry. Although hexagonal phase structures are not readily found in biological membranes, there is a correlation between the effects of membrane additives on bilayer/non-bilayer equilibria and membrane stabilization. It is proposed that the ability of cholesterol sulfate to alter the physical properties of membranes contributes to its stabilization of biological membranes and the inhibition of membrane fusion.  相似文献   

2.
Cholesterol is believed to be an important component in compositionally distinct lipid domains in the cellular plasma membrane, which are referred to as lipid rafts. Insight into how cholesterol influences the interactions that contribute to plasma membrane organization can be acquired from model lipid membranes. Here we characterize the lipid mixing and phase behavior exhibited by (15)N-dilaurolyphosphatidycholine ((15)N-DLPC)/deuterated distearoylphosphatiylcholine (D(70)-DSPC) membranes with various amounts of cholesterol (0, 3, 7, 15 or 19mol%) at room temperature. The microstructures and compositions of individual membrane domains were determined by imaging the same membrane locations with both atomic force microscopy (AFM) and high-resolution secondary ion mass spectrometry (SIMS) performed with a Cameca NanoSIMS 50. As the cholesterol composition increased from 0 to 19mol%, the circular ordered domains became more elongated, and the amount of (15)N-DLPC in the gel-phase domains remained constant at 6-7mol%. Individual and micron-sized clusters of nanoscopic domains enriched in D(70)-DSPC were abundant in the 19mol% cholesterol membrane. AFM imaging showed that these lipid domains had irregular borders, indicating that they were gel-phase domains, and not non-ideally mixed lipid clusters or nanoscopic liquid-ordered domains.  相似文献   

3.
Previous work has shown that cholesterol levels are modulated in plasma membranes from some but not all tissues of poikilotherms over the course of temperature change. To gain a better understanding of tissue and membrane domain-specific cholesterol function during thermal adaptation we examined effects of cholesterol on membrane physical properties and (Na+,K+)-ATPase in native and cholesterol-enriched basolateral membranes from kidney and intestine of thermally acclimated trout (Oncorhynchus mykiss). Membrane order (as indicated by fluorescence depolarization studies) is increased, whereas its thermal sensitivity is decreased by elevated cholesterol levels in mem branes with relatively low endogenous amounts of cholesterol (intestinal membranes and renal membranes from cold-acclimated fish). Thermal sensitivities of membrane order in kidney are 1.5-fold higher in native compared with cholesterol-enriched basolateral membranes. For renal plasma membranes, (Na+,K+)- ATPase activity is lowest near the transition between native and surpraphysiological cholesterol levels. Endogenous cholesterol levels (relative to phospholipid contents) in intestinal basolateral membranes from cold-acclimated fish vary more than 1.5-fold; membranes with cholesterol/phospholipid molar ratios of 0.3 have activities of (Na+,K+)-ATPase that are twofold lower than native membranes having a ratio of 0.2. These results suggests that maintenance of cholesterol levels in intestinal basolateral membranes during thermal acclimation may ensure sufficient activity of (Na+,K+)-ATPase. Membrane function in kidney, with its high native cholesterol content, is less likely to be affected by temperature change. Accepted: 21 January 1997  相似文献   

4.
《Biophysical journal》2022,121(16):3146-3161
Cholesterol plays a unique role in the regulation of membrane organization and dynamics by modulating the membrane phase transition at the nanoscale. Unfortunately, due to their small sizes and dynamic nature, the effects of cholesterol-mediated membrane nanodomains on membrane dynamics remain elusive. Here, using ultrahigh-speed single-molecule tracking with advanced optical microscope techniques, we investigate the diffusive motion of single phospholipids in the live cell plasma membrane at the nanoscale and its dependency on the cholesterol concentration. We find that both saturated and unsaturated phospholipids undergo anomalous subdiffusion on the length scale of 10–100 nm. The diffusion characteristics exhibit considerable variations in space and in time, indicating that the nanoscopic lipid diffusion is highly heterogeneous. Importantly, through the statistical analysis, apparent dual-mobility subdiffusion is observed from the mixed diffusion behaviors. The measured subdiffusion agrees well with the hop diffusion model that represents a diffuser moving in a compartmentalized membrane created by the cytoskeleton meshwork. Cholesterol depletion diminishes the lipid mobility with an apparently smaller compartment size and a stronger confinement strength. Similar results are measured with temperature reduction, suggesting that the more heterogeneous and restricted diffusion is connected to the nanoscopic membrane phase transition. Our conclusion supports the model that cholesterol depletion induces the formation of gel-phase, solid-like membrane nanodomains. These nanodomains undergo restricted diffusion and act as diffusion obstacles to the membrane molecules that are excluded from the nanodomains. This work provides the experimental evidence that the nanoscopic lipid diffusion in the cell plasma membrane is heterogeneous and sensitive to the cholesterol concentration and temperature, shedding new light on the regulation mechanisms of nanoscopic membrane dynamics.  相似文献   

5.
Structural and functional characteristics of erythrocyte membranes were studied in rabbits with experimental atherosclerosis. In animals with single lipid spots in the aorta, a significant rise of the plasma cholesterol level was associated with the increased cholesterol/phospholipid (CS/PL) ratio and diminished activity of erythrocyte membrane Na+, K+-ATPase. EPMR spin probe data point to changes in structural membrane characteristics--an increase in order parameter for fatty acid chains of lipids and expansion of the temperature interval of the transition phase in the membranes. In rabbits with total aorta injury, a further increase both in the plasma cholesterol concentration and in the CS/PL ratio as well as in structural changes in erythrocyte membranes does not lead to another decrease in the enzymatic activity. In aorta homogenates of the experimental animals, the activity of Na+, K+-ATPase correlated with that in the erythrocyte membrane. This suggests the existence of similar chemical and structural changes in aorta cell membranes. The data may provide an indirect evidence in favour of the hypothesis of the involvement of smooth muscle cells and membrane enzymatic activity alterations in atherosclerosis.  相似文献   

6.
The photoreceptor rod outer segment (ROS) provides a unique system in which to investigate the role of cholesterol, an essential membrane constituent of most animal cells. The ROS is responsible for the initial events of vision at low light levels. It consists of a stack of disk membranes surrounded by the plasma membrane. Light capture occurs in the outer segment disk membranes that contain the photopigment, rhodopsin. These membranes originate from evaginations of the plasma membrane at the base of the outer segment. The new disks separate from the plasma membrane and progressively move up the length of the ROS over the course of several days. Thus the role of cholesterol can be evaluated in two distinct membranes. Furthermore, because the disk membranes vary in age it can also be investigated in a membrane as a function of the membrane age. The plasma membrane is enriched in cholesterol and in saturated fatty acids species relative to the disk membrane. The newly formed disk membranes have 6-fold more cholesterol than disks at the apical tip of the ROS. The partitioning of cholesterol out of disk membranes as they age and are apically displaced is consistent with the high PE content of disk membranes relative to the plasma membrane. The cholesterol composition of membranes has profound consequences on the major protein, rhodopsin. Biophysical studies in both model membranes and in native membranes have demonstrated that cholesterol can modulate the activity of rhodopsin by altering the membrane hydrocarbon environment. These studies suggest that mature disk membranes initiate the visual signal cascade more effectively than the newly synthesized, high cholesterol basal disks. Although rhodopsin is also the major protein of the plasma membrane, the high membrane cholesterol content inhibits rhodopsin participation in the visual transduction cascade. In addition to its effect on the hydrocarbon region, cholesterol may interact directly with rhodopsin. While high cholesterol inhibits rhodopsin activation, it also stabilizes the protein to denaturation. Therefore the disk membrane must perform a balancing act providing sufficient cholesterol to confer stability but without making the membrane too restrictive to receptor activation. Within a given disk membrane, it is likely that cholesterol exhibits an asymmetric distribution between the inner and outer bilayer leaflets. Furthermore, there is some evidence of cholesterol microdomains in the disk membranes. The availability of the disk protein, rom-1 may be sensitive to membrane cholesterol. The effects exerted by cholesterol on rhodopsin function have far-reaching implications for the study of G-protein coupled receptors as a whole. These studies show that the function of a membrane receptor can be modulated by modification of the lipid bilayer, particularly cholesterol. This provides a powerful means of fine-tuning the activity of a membrane protein without resorting to turnover of the protein or protein modification.  相似文献   

7.
Cholesterol is an important molecular component of the plasma membranes of mammalian cells. Its precursor in the sterol biosynthetic pathway, lanosterol, has been argued by Konrad Bloch (Bloch, K. 1965. Science. 150:19-28; 1983. CRC Crit. Rev. Biochem. 14:47-92; 1994. Blonds in Venetian Paintings, the Nine-Banded Armadillo, and Other Essays in Biochemistry. Yale University Press, New Haven, CT.) to also be a precursor in the molecular evolution of cholesterol. We present a comparative study of the effects of cholesterol and lanosterol on molecular conformational order and phase equilibria of lipid-bilayer membranes. By using deuterium NMR spectroscopy on multilamellar lipid-sterol systems in combination with Monte Carlo simulations of microscopic models of lipid-sterol interactions, we demonstrate that the evolution in the molecular chemistry from lanosterol to cholesterol is manifested in the model lipid-sterol membranes by an increase in the ability of the sterols to promote and stabilize a particular membrane phase, the liquid-ordered phase, and to induce collective order in the acyl-chain conformations of lipid molecules. We also discuss the biological relevance of our results, in particular in the context of membrane domains and rafts.  相似文献   

8.
Crane JM  Tamm LK 《Biophysical journal》2004,86(5):2965-2979
Sterols play a crucial regulatory and structural role in the lateral organization of eukaryotic cell membranes. Cholesterol has been connected to the possible formation of ordered lipid domains (rafts) in mammalian cell membranes. Lipid rafts are composed of lipids in the liquid-ordered (l(o)) phase and are surrounded with lipids in the liquid-disordered (l(d)) phase. Cholesterol and sphingomyelin are thought to be the principal components of lipid rafts in cell and model membranes. We have used fluorescence microscopy and fluorescence recovery after photobleaching in planar supported lipid bilayers composed of porcine brain phosphatidylcholine (bPC), porcine brain sphingomyelin (bSM), and cholesterol to map the composition-dependence of l(d)/l(o) phase coexistence. Cholesterol decreases the fluidity of bPC bilayers, but disrupts the highly ordered gel phase of bSM, leading to a more fluid membrane. When mixed with bPC/bSM (1:1) or bPC/bSM (2:1), cholesterol induces the formation of l(o) phase domains. The fraction of the membrane in the l(o) phase was found to be directly proportional to the cholesterol concentration in both phospholipid mixtures, which implies that a significant fraction of bPC cosegregates into l(o) phase domains. Images reveal a percolation threshold, i.e., the point where rafts become connected and fluid domains disconnected, when 45-50% of the total membrane is converted to the l(o) phase. This happens between 20 and 25 mol % cholesterol in 1:1 bPC/bSM bilayers and between 25 and 30 mol % cholesterol in 2:1 bPC/bSM bilayers at room temperature, and at approximately 35 mol % cholesterol in 1:1 bPC/bSM bilayers at 37 degrees C. Area fractions of l(o) phase lipids obtained in multilamellar liposomes by a fluorescence resonance energy transfer method confirm and support the results obtained in planar lipid bilayers.  相似文献   

9.
The interaction of organophosphorus insecticides bromfenvinfos and methyl bromfenvinfos with model and native membranes was investigated by the fluorescence anisotropy of 1,6-diphenyl-1,3,5-hexatriene (DPH), a probe located in the hydrophobic core of the bilayer and 1,3-bis-(1-pyrene)propane, a probe distributed in the outer region of the bilayer. DPH reported a broadening of the transition profile and solidifying effects in the fluid phase of liposomes formed from dimyristoyl (DMPC), dipalmitoyl (DPPC), and distearoyl (DSPC) phosphatidylcholine in the presence of the insecticides. A shift of the transition temperature towards a lower temperature was observed in DPPC- and DSPC-bromfenvinfos-treated vesicles. Py(3)Py detected an ordering effect of the insecticides in the fluid state of the lipids and abolished pre-transition in DPPC and DSPC vesicles. These results suggest that the insecticides localize in the co-operative region of the bilayer. Cholesterol added to DMPC decreased the influence of the insecticides as reported by both DPH and Py(3)Py. The effect of the insecticides on the fluidity of some native membranes, namely erythrocytes, lymphocytes, brain microsomes, and sarcoplasmic reticulum, depended on the cholesterol content in these membranes, the higher the cholesterol content, the smaller the solidifying effect. The physical mechanism of action of the insecticides on membrane lipids can be similar to that of cholesterol. All observed effects were more pronounced for bromfenvinfos than for its methylated analogue which correlates with the toxicity of these compounds for mammals.  相似文献   

10.
K Gaus  R T Dean  L Kritharides  W Jessup 《Biochemistry》2001,40(43):13002-13014
Cholesterol removal from lipid-loaded macrophages is an important, potentially antiatherogenic process, and we have previously shown that an oxysterol, 7-ketocholesterol (7K), can impair efflux to lipid-free apoprotein A-1 (apoA-1). This publication investigates whether incorporation of 7K into membranes could account for this impairment of cholesterol efflux. Cholesterol efflux was studied from lipoprotein-loaded THP-1 cells, from plasma membrane vesicles obtained from these cells, and from artificial, protein-free liposomes. Impairment of cholesterol efflux by 7K was observed for all cholesterol donor systems whether measured as decline in cholesterol removal rates or as the percentage mass of total cellular cholesterol exported. 7-Ketocholesterol itself was not removed by apoA-1 from any of the cholesterol donor systems. Increasing membrane cholesterol content increased the rate of cholesterol removal by apoA-1 (as seen with plasma membrane vesicles), the quantity of cholesterol removed at equilibrium (liposomes), or both (whole cells). Although the minimum inhibitory 7K concentrations varied between the cholesterol donor systems, 7K inhibited cholesterol efflux in all systems. It was concluded that 7K induces alteration in membranes which decreased the efficiency of cholesterol efflux and the quantity of removed cholesterol induced by apoA-1. As cell membrane proteins are not essential for cholesterol efflux in these systems, the impairment of such by 7K suggests that its effect on membrane lipid composition and its structure are key regulatory elements in this efflux process.  相似文献   

11.
Electron spin resonance (ESR) studies were conducted on human platelet plasma membranes using 5-nitroxide stearate, I(12,3). The polarity-corrected order parameter S and polarity-uncorrected order parameters S(T parallel) and S(T perpendicular) were independent of probe concentration at low I(12.3)/membrane protein ratios. At higher ratios, S and S(T perpendicular) decreased with increasing probe concentration while S(T parallel) remained unchanged. This is the result of enhanced radical interactions due to probe clustering. A lipid phase separation occurs in platelet membranes that segregates I(12,3) for temperatures less than 37 degrees C. As Arrhenius plots of platelet acid phosphatase activity exhibit a break at 35 to 36 degrees C, this enzyme activity may be influenced by the above phase separation. Similar experiments were performed on native [cholesterol/phospholipid ratio (C/P) = 0.71] and cholesterol-enriched [C/P = 0.85] rat liver plasma membranes. At 36 degrees C, cholesterol loading reduces I(12,3) flexibility and decreases the probe ratio at which radical interactions are apparent. The latter effects are attributed to the formation of cholesterol-rich lipid domains, and to the inability of I(12,3) to partition into these domains because of steric hinderance. Cholesterol enrichment increases both the high temperature onset of the phase separation occurring in liver membranes from 28 degrees to 37 degrees C and the percentage of probe-excluding, cholesterol-rich lipid domains at elevated temperatures. A model is discussed attributing the lipid phase separation in native liver plasma membranes to cholesterol-rich and -poor domains. As I(12,3) behaves similarly in cholesterol-enriched liver and human platelet plasma membranes, cholesterol-rich and -poor domains probably exist in both systems at physiologic temperatures.  相似文献   

12.
Cholesterol efflux from the plasma membrane to HDLs is essential for cell cholesterol homeostasis. Recently, cholesterol-enriched ordered membrane domains, i.e. lipid rafts have been proposed to play an important role in this process. Here we introduce a new method to investigate the role of HDL interactions with the raft lipid phase and to directly visualize the effects of HDL-induced cholesterol efflux on rafts in model membranes. Addition of HDLs to giant lipid vesicles containing raft-type domains promoted decrease in size and disappearance of such domains as visualized by fluorescence microscopy. This was interpreted as resulting from cholesterol efflux from the vesicles to the HDLs. The raft vanishing rate was directly related to the HDL concentration. Evidence for a direct interaction of HDLs with the membrane was obtained by observing mutual adhesion of vesicles. It is suggested that the present method can be used to study the selective role of the bilayer lipid phase (raft and non-raft) in cholesterol efflux and membrane-HDL interaction and their underlying mechanisms. Such mechanisms may contribute to cholesterol efflux in vivo.  相似文献   

13.
Gidwani A  Holowka D  Baird B 《Biochemistry》2001,40(41):12422-12429
Specialized plasma membrane domains known as lipid rafts participate in signal transduction and other cellular processes, and their liquid ordered (L(o)) phase appears to be important for their function. To quantify ordered lipids in biological membranes, we investigated steady-state fluorescence anisotropy of two lipid probes, 2-[3-(diphenylhexatrienyl)propanoyl]-1-hexadecanoyl-sn-glycero-3-phosphocholine (DPH-PC) and N-(7-nitrobenz-2-oxa-1,3-diazol-4-yl)-1,2-dihexadecanoyl-sn-glycero-3-phosphoethanolamine (NBD-PE). We show using model membranes with varying amounts of cholesterol that steady-state fluorescence anisotropy is a sensitive measure of cholesterol-dependent ordering. The results suggest that DPH-PC is a more sensitive probe than NBD-PE. In the presence of cholesterol, ordering also depends on the degree of saturation of the phospholipid acyl chains. Using DPH-PC, we find that the plasma membrane of RBL-2H3 mast cells is substantially ordered, roughly 40%, as determined by comparison with anisotropy values for model membranes entirely in a liquid ordered (L(o)) phase and in a liquid disordered (L(alpha)) phase. This result is consistent with the finding that approximately 30% of plasma membrane phospholipids are insoluble in 0.5% Triton X-100. Furthermore, detergent-resistant membranes isolated by sucrose gradient fractionation of Triton X-100 cell lysates are more ordered than plasma membrane vesicles, suggesting that they represent a more ordered subset of the plasma membrane. Treatment of plasma membrane vesicles with methyl-beta-cyclodextrin resulting in 75% cholesterol depletion leads to commensurate decreases in lipid order as measured by anisotropy of DPH-PC and NBD-PE. These results demonstrate that steady-state fluorescence anisotropy of DPH-PC is a useful way to measure the amount of lipid order in biological membranes.  相似文献   

14.
Caveolin (CAV) is an essential component of caveolae, cholesterol-enriched invaginations of the plasma membrane of most mammalian cells. However, CAV is not restricted to plasma membrane caveolae, and pools of CAV are present in myriad intracellular membranes. CAV proteins tightly bind cholesterol and contribute to regulation of cholesterol fluxes and distributions within cells. In this context, we recently showed that CAV1 regulates the poorly understood process controlling mitochondrial cholesterol levels. Cholesterol accumulates in mitochondrial membranes in the absence of CAV1, promoting the organelle's dysfunction with important metabolic consequences for cells and animals. In this article, we suggest a working hypothesis that addresses the role of CAV1 within the homeostatic network that regulates the influx/efflux of mitochondrial cholesterol.  相似文献   

15.
Shedding of extracellular membranes from the cell surface may be one of the means through which cells communicate with one another. In an attempt to elucidate whether cell surface exfoliation is a directed or random process, we investigated the membrane lipid and protein composition and membrane lipid order of shed extracellular membranes and of plasma membranes from which they arose in normal circulating lymphocytes and in the B-lymphoblastoid cell lines Raji, WI HF2 729 and the T-lymphoblastoid cell line Jurkat. Extracellular membranes derived from transformed cell lines were more rigid as assessed by steady state polarization of 1,6-diphenylhexatriene (DPH) and were highly enriched in cholesterol when compared with the corresponding plasma membrane. The extracellular membranes from normal lymphocytes, on the other hand, were more fluid and contained more polyunsaturated acyl chains than did the plasma membranes from these cells. Our results suggest that extracellular membranes are shed from specialized regions of the lymphocyte plasma membrane and that membrane exfoliation is likely to be a directed event.  相似文献   

16.
Herein, using a recently developed hydration-sensitive ratiometric biomembrane probe based on 3-hydroxyflavone (F2N12S) that binds selectively to the outer leaflet of plasma membranes, we compared plasma membranes of living cells and lipid vesicles as model membranes. Through the spectroscopic analysis of the probe response, we characterized the membranes in terms of hydration and polarity (electrostatics). The hydration parameter value in cell membranes was in between the values obtained with liquid ordered (Lo) and liquid disordered (Ld) phases in model membranes, suggesting that cell plasma membranes exhibit a significant fraction of Lo phase in their outer leaflet. Moreover, two-photon fluorescence microscopy experiments show that cell membranes labeled with this probe exhibit a homogeneous lipid distribution, suggesting that the putative domains in Lo phase are distributed all over the membrane and are highly dynamic. Cholesterol depletion affected dramatically the dual emission of the probe suggesting the disappearance of the Lo phase in cell membranes. These conclusions were corroborated with the viscosity sensitive diphenylhexatriene derivative TMA-DPH, showing membrane fluidity in intact cells intermediate between those for Lo and Ld phases in model membranes, as well as a significant increase in fluidity after cholesterol depletion. Moreover, we observed that cell apoptosis results in a similar loss of Lo phase, which could be attributed to a flip of sphingomyelin from the outer to the inner leaflet of the plasma membrane due to apoptosis-driven lipid scrambling. Our data suggest a new methodology for evaluating the Lo phase in membranes of living cells.  相似文献   

17.
Cholesterol is a unique molecule in terms of high level of in-built stringency, fine tuned by natural evolution for its ability to optimize physical properties of higher eukaryotic cell membranes in relation to biological functions. We previously demonstrated the requirement of membrane cholesterol in maintaining the ligand binding activity of the hippocampal serotonin1A receptor. In order to test the molecular stringency of the requirement of cholesterol, we depleted cholesterol from native hippocampal membranes followed by replenishment with desmosterol. Desmosterol is an immediate biosynthetic precursor of cholesterol in the Bloch pathway differing only in a double bond at the 24th position in the alkyl side chain. Our results show that replenishment with desmosterol does not restore ligand binding activity of the serotonin1A receptor although replenishment with cholesterol led to significant recovery of ligand binding. This is in spite of similar membrane organization (order) in these membranes, as monitored by fluorescence anisotropy measurements. The requirement for restoration of ligand binding activity therefore appears to be more stringent than the requirement for the recovery of overall membrane order. These novel results have potential implications in understanding the interaction of membrane lipids with this important neuronal receptor in diseases such as desmosterolosis.  相似文献   

18.
In order to investigate the role of the plasma membrane in determining the kinetics of removal of cholesterol from cells, the efflux of [3H]cholesterol from intact cells and plasma membrane vesicles has been compared. The release of cholesterol from cultures of Fu5AH rat hepatoma and WIRL-3C rat liver cells to complexes of egg phosphatidylcholine (1 mg/ml) and human high-density apolipoprotein is first order with respect to concentration of cholesterol in the cells, with half-times (t 1/2) for at least one-third of the cell cholesterol of 3.2 +/- 0.6 and 14.3 +/- 1.5 h, respectively. Plasma membrane vesicles (0.5-5.0 micron diameter) were produced from both cell lines by incubating the cells with 50 mM formaldehyde and 2 mM dithiothreitol for 90 min. The efflux of cholesterol from the isolated vesicles follows the same kinetics as the intact, parent cells: the t 1/2 values for plasma membrane vesicles of Fu5AH and WIRL cells are 3.9 +/- 0.5 and 11.2 +/- 0.7 h, respectively. These t 1/2 values reflect the rate-limiting step in the cholesterol efflux process, which is the desorption of cholesterol molecules from the plasma membrane into the extracellular aqueous phase. The fact that intact cells and isolated plasma membranes release cholesterol at the same rates indicates that variations in the plasma membrane structure account for differences in the kinetics of cholesterol release from different cell types. In order to investigate the role of plasma membrane lipids, the kinetics of cholesterol desorption from small unilamellar vesicles prepared from the total lipid isolated from plasma membrane vesicles of Fu5AH and WIRL cells were measured. Half-times of cholesterol release from plasma membrane lipid vesicles of Fu5AH and WIRL cells were the same, with values of 3.1 +/- 0.1 and 2.9 +/- 0.2 h, respectively. Since bilayers formed from isolated plasma membrane lipids do not reproduce the kinetics of cholesterol efflux observed with the intact plasma membranes, it is likely that the local domain structure, as influenced by membrane proteins, is responsible for the differences in t 1/2 values for cholesterol efflux from these cell lines.  相似文献   

19.
In plasma membranes, most of glycosylphosphatidylinositol (GPI)-anchored proteins would be associated with rafts, a category of ordered microdomains enriched in sphingolipids and cholesterol (Ch). They would be also concentrated in the detergent resistant membranes (DRMs), a plasma membrane fraction extracted at low temperature. Preferential localization of GPI-anchored proteins in these membrane domains is essentially governed by their high lipid order, as compared to their environment. Changes in the temperature are expected to modify the membrane lipid order, suggesting that they could affect the distribution of GPI-anchored proteins between membrane domains. Validity of this hypothesis was examined by investigating the temperature-dependent localization of the GPI-anchored bovine intestinal alkaline phophatase (BIAP) into model raft made of palmitoyloleoylphosphatidylcholine/sphingomyelin/cholesterol (POPC/SM/Chl) supported membranes. Atomic force microscopy (AFM) shows that the inserted BIAP is localized in the SM/Chl enriched ordered domains at low temperature. Above 30 degrees C, BIAP redistributes and is present in both the 'fluid' POPC enriched and the ordered SM/Chl domains. These data strongly suggest that in cells the composition of plasma membrane domains at low temperature differs from that at physiological temperature.  相似文献   

20.
Massey JB  Pownall HJ 《Biochemistry》2005,44(30):10423-10433
7-Ketocholesterol is an oxidized derivative of cholesterol with numerous physiological effects. In model membranes, 7-ketocholesterol and cholesterol were compared by physical measures of bilayer order and polarity, formation of detergent resistant domains (DRM), phase separation, and membrane microsolubilization by apolipoprotein A-I. In binary mixtures of a saturated phosphatidylcholine (PC), dipalmitoyl-PC (DPPC), and cholesterol or 7-ketocholesterol, the sterols modulate bilayer order and polarity and induce DRM formation to a similar extent. Cholesterol induces formation of ordered lipid domains (rafts) in tertiary mixtures with dioleoyl-PC (DOPC) and DPPC, or DOPC and sphingomyelin (SM). In tertiary mixtures, cholesterol increased lipid order and reduces bilayer polarity more than 7-ketocholesterol. This effect was more pronounced when the mixtures were in a miscible liquid-disordered (L(d)) phase. Substitution of 7-ketocholesterol for cholesterol dramatically reduced the extent of DRM formation in DOPC/DPPC and DOPC/SM bilayers and ordered lipid phase separation in mixtures of a spin-labeled PC with DPPC and with SM. Compared to cholesterol, 7-ketocholesterol decreased the rate for the microsolubilization of dimyristoyl-PC multilamellar vesicles by apolipoprotein A-I. The membrane effects of 7-ketocholesterol were dependent on the phospholipid matrix. In L(d) phase phospholipids, a model for 7-ketocholesterol indicates that the proximity of the 7-keto and 3beta-OH groups puts both polar moieties at the lipid-water interface to tilt the sterol nucleus to the plane of the bilayer. 7-Ketocholesterol was less effective in forming ordered lipid domains, in decreasing the level of bilayer hydration, and in forming phase boundary bilayer defects. Compared to cholesterol, 7-ketocholesterol can differentially modulate membrane properties involved in protein-membrane association and function.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号