共查询到20条相似文献,搜索用时 24 毫秒
1.
When designing clinical trials, researchers often encounter the uncertainty in the treatment effect or variability assumptions. Hence the sample size calculation at the planning stage of a clinical trial may also be questionable. Adjustment of the sample size during the mid-course of a clinical trial has become a popular strategy lately. In this paper we propose a procedure for calculating additional sample size needed based on conditional power, and adjusting the final-stage critical value to protect the overall type-I error rate. Compared to other previous procedures, the proposed procedure uses the definition of the conditional type-I error directly without appealing to an extra special function for it. It has better flexibility in setting up interim decision rules and the final-stage test is a likelihood ratio test. 相似文献
2.
Gene H. Albrecht Bruce R. Gelvin Steve E. Hartman 《American journal of physical anthropology》1993,91(4):441-468
Simple ratios in which a measurement variable is divided by a size variable are commonly used but known to be inadequate for eliminating size correlations from morphometric data. Deficiencies in the simple ratio can be alleviated by incorporating regression coefficients describing the bivariate relationship between the measurement and size variables. Recommendations have included: 1) subtracting the regression intercept to force the bivariate relationship through the origin (intercept-adjusted ratios); 2) exponentiating either the measurement or the size variable using an allometry coefficient to achieve linearity (allometrically adjusted ratios); or 3) both subtracting the intercept and exponentiating (fully adjusted ratios). These three strategies for deriving size-adjusted ratios imply different data models for describing the bivariate relationship between the measurement and size variables (i.e., the linear, simple allometric, and full allometric models, respectively). Algebraic rearrangement of the equation associated with each data model leads to a correctly formulated adjusted ratio whose expected value is constant (i.e., size correlation is eliminated). Alternatively, simple algebra can be used to derive an expected value function for assessing whether any proposed ratio formula is effective in eliminating size correlations. Some published ratio adjustments were incorrectly formulated as indicated by expected values that remain a function of size after ratio transformation. Regression coefficients incorporated into adjusted ratios must be estimated using least-squares regression of the measurement variable on the size variable. Use of parameters estimated by any other regression technique (e.g., major axis or reduced major axis) results in residual correlations between size and the adjusted measurement variable. Correctly formulated adjusted ratios, whose parameters are estimated by least-squares methods, do control for size correlations. The size-adjusted results are similar to those based on analysis of least-squares residuals from the regression of the measurement on the size variable. However, adjusted ratios introduce size-related changes in distributional characteristics (variances) that differentially alter relationships among animals in different size classes. © 1993 Wiley-Liss, Inc. 相似文献
3.
MOTIVATION: Sample size calculation is important in experimental design and is even more so in microarray or proteomic experiments since only a few repetitions can be afforded. In the multiple testing problems involving these experiments, it is more powerful and more reasonable to control false discovery rate (FDR) or positive FDR (pFDR) instead of type I error, e.g. family-wise error rate (FWER). When controlling FDR, the traditional approach of estimating sample size by controlling type I error is no longer applicable. RESULTS: Our proposed method applies to controlling FDR. The sample size calculation is straightforward and requires minimal computation, as illustrated with two sample t-tests and F-tests. Based on simulation with the resultant sample size, the power is shown to be achievable by the q-value procedure. AVAILABILITY: A Matlab code implementing the described methods is available upon request. 相似文献
4.
5.
Vol. 23, No. 6, 2007, pp. 739–746 doi:10.1093/bioinformatics/btl664 The calculation of the sample sizes using the method of Poundsand Cheng 相似文献
6.
Determining the expected distribution of the time to the most recent common ancestor of a sample of individuals may deliver important information about the genetic markers and evolution of the population. In this paper, we introduce a new recursive algorithm to calculate the distribution of the time to the most recent common ancestor of the sample from a population evolved by any conditional multinomial sampling model. The most important advantage of our method is that it can be applied to a sample of any size drawn from a population regardless of its size growth pattern. We also present a very efficient method to implement and store the genealogy tree of the population evolved by the Galton–Watson process. In the final section we present results applied to a simulated population with a single bottleneck event and to real populations of known size histories. 相似文献
7.
8.
McNemar's (1947, Psychometrika 12, 153-157) test of marginal homogeneity is generalized to a two-sample situation where the hypothesis of interest is that the marginal changes in each of two independently sampled tables are equal. This situation is especially applicable to two cohorts (a control and an intervention cohort), each measured at baseline and after the intervention on a binary outcome variable. Some assumptions often realistic in this situation simplify the calculation of sample size. The calculation of sample size in a study designed to increase utilization of breast cancer screening is demonstrated. 相似文献
9.
Background
Before conducting a microarray experiment, one important issue that needs to be determined is the number of arrays required in order to have adequate power to identify differentially expressed genes. This paper discusses some crucial issues in the problem formulation, parameter specifications, and approaches that are commonly proposed for sample size estimation in microarray experiments. Common methods for sample size estimation are formulated as the minimum sample size necessary to achieve a specified sensitivity (proportion of detected truly differentially expressed genes) on average at a specified false discovery rate (FDR) level and specified expected proportion (π 1) of the true differentially expression genes in the array. Unfortunately, the probability of detecting the specified sensitivity in such a formulation can be low. We formulate the sample size problem as the number of arrays needed to achieve a specified sensitivity with 95% probability at the specified significance level. A permutation method using a small pilot dataset to estimate sample size is proposed. This method accounts for correlation and effect size heterogeneity among genes. 相似文献10.
11.
12.
A genome-wide study of preferential amplification/hybridization in microarray-based pooled DNA experiments 总被引:2,自引:0,他引:2
Yang HC Liang YJ Huang MC Li LH Lin CH Wu JY Chen YT Fann CS 《Nucleic acids research》2006,34(15):e106
Microarray-based pooled DNA methods overcome the cost bottleneck of simultaneously genotyping more than 100000 markers for numerous study individuals. The success of such methods relies on the proper adjustment of preferential amplification/hybridization to ensure accurate and reliable allele frequency estimation. We performed a hybridization-based genome-wide single nucleotide polymorphisms (SNPs) genotyping analysis to dissect preferential amplification/hybridization. The majority of SNPs had less than 2-fold signal amplification or suppression, and the lognormal distributions adequately modeled preferential amplification/hybridization across the human genome. Comparative analyses suggested that the distributions of preferential amplification/hybridization differed among genotypes and the GC content. Patterns among different ethnic populations were similar; nevertheless, there were striking differences for a small proportion of SNPs, and a slight ethnic heterogeneity was observed. To fulfill appropriate and gratuitous adjustments, databases of preferential amplification/hybridization for African Americans, Caucasians and Asians were constructed based on the Affymetrix GeneChip Human Mapping 100 K Set. The robustness of allele frequency estimation using this database was validated by a pooled DNA experiment. This study provides a genome-wide investigation of preferential amplification/hybridization and suggests guidance for the reliable use of the database. Our results constitute an objective foundation for theoretical development of preferential amplification/hybridization and provide important information for future pooled DNA analyses. 相似文献
13.
Sex assessment from tooth measurements can be of major importance for forensic and bioarchaeological investigations, especially when only teeth or jaws are available. The purpose of this study is to assess the reliability and applicability of establishing sex identity in a sample of Greek population using the discriminant function proposed by Rösing et al. (1995). 相似文献
14.
15.
16.
17.
18.
Motivation: Owing to the experimental cost and difficulty inobtaining biological materials, it is essential to considerappropriate sample sizes in microarray studies. With the growinguse of the False Discovery Rate (FDR) in microarray analysis,an FDR-based sample size calculation is essential. Method: We describe an approach to explicitly connect the samplesize to the FDR and the number of differentially expressed genesto be detected. The method fits parametric models for degreeof differential expression using the ExpectationMaximizationalgorithm. Results: The applicability of the method is illustrated withsimulations and studies of a lung microarray dataset. We proposeto use a small training set or published data from relevantbiological settings to calculate the sample size of an experiment. Availability: Code to implement the method in the statisticalpackage R is available from the authors. Contact: jhu{at}mdanderson.org 相似文献
19.
蔡晓钟 《中国微生态学杂志》2004,16(4):247-247
在实验诊断学的实验教学中,形态学标本如管型,病理性脑脊液等的来源越来越困难,尤其是在时间上,标本的来源有随机性,而上课时间是固定的,教学质量很难,要解决这个问题,就必须研究标本的保存与人工制备.作者经过多年的探索与实践,获得了一些标本的保存和制备的体会,这样既保证了教学质量,又减轻了寻找阳性标本的难度. 相似文献