首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
2.
Primary astroglial cultures were used to compare the relationships to cell cycling of dolichol-linked glycoprotein synthesis, and of availability of mevalonate, the precursor of dolichol and other isoprenoid lipids. With shift-up to 10% serum (time 0) after 48 h of serum depletion, the proportion of cells in S phase (bromodeoxyuridine immunofluorescence) remained under 15% for 12 h, then increased by 20 h to 72 +/- 10%; DNA synthetic rates (thymidine incorporation) increased 5-fold. S phase transition was prevented by addition at 10-12 h of tunicamycin, an inhibitor of transfer of saccharide moieties to dolichol. Mevinolin, an inhibitor of mevalonate biosynthesis, also blocked cycle progression when added at this time. However, mevinolin markedly inhibited the isoprenoid pathway, as reflected by over 90% reduction of sterol synthesis, without inhibiting net glycoprotein synthesis. Removal of mevinolin after a 24 h exposure delayed S phase until 48 h, following recovery of sterol synthesis, even though kinetics of glycoprotein synthesis were unaffected. Tunicamycin removal after 24 h spared sterol synthesis, but caused delay of S phase until 72 h, following recovery of glycoprotein synthesis. In mevinolin-treated cultures, S phase transition was restored by 1 h of exposure to mevalonate at 10 h, although cycling was thereby rendered sensitive to inhibition by cycloheximide and by tunicamycin. Cell cycle progression following hydroxyurea exposure and release was unaffected by mevinolin, tunicamycin, or cycloheximide. Thus, in these developing astroglia, mevalonate and its isoprenoid derivatives have at least two cell cycle-specific roles: dolichol-linked glycoprotein synthesis is required at or before the G1/S transition, while a distinct mevalonate requirement is apparent also in late G1.  相似文献   

3.
Mevalonate kinase (MK) is an essential enzyme in the mevalonate pathway which produces numerous cellular isoprenoids. The enzyme has been characterized both at the biochemical and the molecular level in a variety of organisms. Despite the fact that mevalonate kinase is not the rate-limiting enzyme in isoprenoid biosynthesis, its activity is subject to feedback regulation by the branch-point intermediates geranyldiphosphate, farnesyldiphosphate and geranylgeranyldiphosphate. Recently, the importance of mevalonate kinase was demonstrated by the identification of its deficiency as the biochemical and molecular cause of the inherited human disorders mevalonic aciduria and hyperimmunoglobulinemia D and periodic fever syndrome. The pathophysiology of these disorders is not yet understood, but eventually will give insight into the in vivo role of mevalonate kinase and isoprenoid biosynthesis with respect to the acute phase response and fever. The subcellular localization of mevalonate kinase is still a matter of debate. The enzyme could be localized predominantly in the cytosol, or in peroxisomes, or it is associated differentially with peroxisomes. Here we review the biochemical and molecular properties of MK, and discuss its biological significance, the regulation of its enzyme activity and finally its subcellular localization.  相似文献   

4.
5.
Comment on: Freed-Pastor WA, et al. Cell 2012; 148:244-58 and Ginestier C, et al. Stem Cells 2012; 1327-37.  相似文献   

6.
D I Mundy  W J Strittmatter 《Cell》1985,40(3):645-656
Exocytosis is initiated by the receptor-mediated influx of calcium that results in fusion of the secretory vesicle with the plasma membrane. We examined the possibility that calcium-dependent exocytosis in mast cells and adrenal chromaffin cells requires metalloendoprotease activity. Metalloendoprotease inhibitors and dipeptide substrates block exocytosis in these cells with the same specificity and dose dependency as that with which they interact with metalloendoproteases. Metalloendoprotease activity is identified in these cells with fluorogenic synthetic substrates, which also blocked exocytosis. Metalloendoprotease activity is highest in the plasma membrane of chromaffin cells. The metalloendoprotease appears to be required in exocytosis at a step dependent on or after calcium entry, since exocytosis initiated by direct calcium introduction in both mast cells and chromaffin cells is blocked by metalloendoprotease inhibitors.  相似文献   

7.
8.
Cognitive motor control refers to processes that blend cognitive and motor functions in a seamless, interwoven fashion. Such functions evolve in space and time at various levels of complexity. This article focuses on conceptual issues regarding spatial and temporal aspects of motor control as well as on methods suitable for extracting information from neuronal ensembles.  相似文献   

9.
1. This work reviews the present knowledge of the physiological role and mechanism of action of mevalonate 5-diphosphate decarboxylase, the third enzyme involved in the biosynthesis of cholesterol from mevalonic acid. 2. Published evidence indicates that this and other enzymes of the cholesterol biosynthetic pathway present coordinate fluctuations in activity in rat liver. A possible regulatory role for the brain decarboxylases from chicken and rat has been proposed. 3. From kinetic and stereochemical studies with the chicken liver enzyme it has been proposed that the reaction is initiated by the abstraction of a proton from the 3-hydroxyl group of mevalonate 5-diphosphate by a basic group in the enzyme, followed by the nucleophilic attack of the C-3 oxygen on P gamma of the lambda isomer of the beta, gamma bidentate MgATP2- in a SN2(P) reaction that goes with inversion of configuration at P.  相似文献   

10.
The mevalonate pathway is a highly conserved metabolic cascade and provides isoprenoid building blocks for the biosynthesis of vital cellular products such as cholesterol or prenyl pyrophosphates that serve as substrates for the posttranslational prenylation of numerous proteins. The pathway, which is frequently hyperactive in cancer cells, is considered an important target in cancer therapy, since prenylated members of the Ras superfamily are crucially involved in the control of proliferation, survival, invasion and metastasis of tumour cells. Upstream accumulation and downstream depletion of mevalonate pathway intermediates as induced for instance by aminobisphosphonates translate into different effects in cancer and immune cells. Thus, mevalonate pathway regulation can affect tumour biology either directly or exhibit indirect antitumour effects through stimulating cancer immune surveillance. The present review summarizes major effects of pharmacologic mevalonate pathway regulation in cancer and immune cells that may collaboratively contribute to the efficacy of cancer therapy.  相似文献   

11.
12.
13.
14.
Melanoma is a lethal form of skin cancer with rising global incidence. However, limited treatment options are available for advanced melanoma and this is further compounded by the development of resistance toward existing drugs. Panduratin A (PA), a cyclohexanyl chalcone found in Boesenbergia rotunda, was investigated for its cytotoxic potentials against human malignant melanoma A375 cells. Our initial findings revealed that mitochondrion is the primary acting site of PA on A375 cancer cells and the cytotoxic mechanisms of PA were further investigated using a temporal quantitative proteomics approach by iTRAQ 2D‐LC‐MS/MS. Comprehensive proteomics analysis identified 296 proteins that were significantly deregulated in PA‐treated A375 cells and revealed the involvement of mitochondrial oxidative phosphorylation, secretory and ER stress pathway, and apoptosis. We further confirmed that the PA‐induced apoptosis was mediated by prolonged ER stress at least in part via the PERK/eIF2α/ATF4/CHOP pathway. Pretreatment with cycloheximide, an ER stress inhibitor rescued PA‐induced cell death, which was accompanied by the suppression of ER‐stress‐related HSPA5 and CHOP proteins. The present study provides comprehensive mechanistic insights into the cytotoxic mechanisms of PA.  相似文献   

15.
Some aspects of iron cycling in maritime antarctic lakes   总被引:1,自引:1,他引:0  
Iron occurs in extremely high concentrations in certain maritime Antarctic freshwater lakes which seasonally develop an anoxic zone. In oligotrophic Sombre Lake the data show that Fe(II) precipitates as Fe(III) oxyhydroxides which bind phosphorus and return it to the sediments. In nutrient-enriched Amos lake, significant quantities of sulphide are also produced and this binds a proportion of the released Fe(II) so reducing the ratio of total iron to phosphorus at the redox boundary where the oxyhydroxides are formed. A proportion of the sediment-released phosphorus therefore reaches the upper waters of this lake (unlike in Sombre Lake) and provides the initial nutrient source for under-ice phytoplankton development in spring. Iron-reducing bacteria have been isolated, from Sombre Lake sediments, which apparently utilise the abundant Fe(III) oxyhydroxides. From thermodynamic considerations (assuming Fe(III) is not limiting) these should outcompete sulphate reducers and methanogens (both previously reported from Sombre and Amos Lakes) and could therefore constitute an important component of the anaerobic mineralisation of organic carbon in such lakes.  相似文献   

16.
Spatial and temporal aspects of cell signalling   总被引:16,自引:0,他引:16  
As new techniques are developed to measure intracellular messengers it becomes increasingly apparent that there is a remarkable spatial and temporal organization of cell signalling. Cells possess a small discrete hormone-sensitive pool of inositol lipid. In some cells such as Xenopus oocytes and Limulus photoreceptors this phosphoinositide signalling system is highly concentrated in one region of the cell, so establishing localized calcium gradients. Another example is the hydrolysis of inositol lipids in eggs at the point of sperm entry resulting in a localized increase in Ins(1,4,5)P3 and calcium which spreads like a wave throughout the egg. In hamster eggs this burst of calcium at fertilization recurs at 1-3 min intervals for over 100 min, a particularly dramatic example of spontaneous activity. Spontaneous oscillations in intracellular calcium exist in many different cell types and are often induced by agonists that hydrolyse inositol lipids. We have made a distinction between oscillations that are approximately sinusoidal and occur at a higher frequency where free calcium is probably continuously involved in the oscillatory cycle and those where calcium falls to resting levels for many seconds between transients. In the former case, the oscillations are thought to be induced through a cytoplasmic oscillator based on the phenomenon of calcium-induced calcium release. Such oscillations can be induced in Xenopus oocytes after injection with Ins(1,4,5)P3. A receptor-controlled oscillator based on the periodic formation of Ins(1,4,5)P3 is probably responsible for the generation of the widely spaced calcium transients. The function of such calcium oscillations is currently unknown. They may be a reflection of the feedback interactions that operate to control intracellular calcium. Another possibility emerged from observations that in some cells the frequency of calcium oscillations varied with agonist concentration, suggesting that cells might employ these oscillations as a way of encoding information. One advantage of using such a frequency-dependent mechanism may lie in an increase in fidelity, especially at low agonist concentrations. Whatever these functions might be, it is clear that uncovering the mechanisms responsible for such oscillatory activity will greatly enhance our understanding of the relation between the phosphoinositides and calcium signalling.  相似文献   

17.
Nerve growth-promoting activity in the chick embryo: quantitative aspects   总被引:1,自引:0,他引:1  
Nerve growth-promoting activity in organ extracts from the chick embryo was titrated using ganglia explanted to a collagen gel. Fibre outgrowth responses evoked in ciliary, sympathetic and spinal ganglia were well correlated. At embryonic day 8, 66% of the activity was localized in the yolk sac, 19% to the chorioallantois and the remaining 15% was widespread in the embryo. At day 18, total activity had increased 27-fold, the carcass now accounting for 90%. In parallel, the embryo extracts also promoted survival and neurite extension in dissociated ganglionic neurons seeded at low density in the gel. It is suggested that the observed effects are due to one active substance widely distributed in the embryo and increasing in amount during development. The substance has a molecular weight of over 10,000 and is distinct from nerve growth factor (NGF). A function of it may be to regulate axonal growth and survival of autonomic and sensory neurons.  相似文献   

18.
19.
During apoptosis, cytochrome c released from mitochondria activates Apaf-1, a cofactor of caspase-9. The evidence that cytochrome c can activate Apaf-1 is abundant, but the proof that cytochrome c is required for apoptosis is limited to two studies that used genetically modified mice. One of these studies concluded that in some tissues apoptosis may require Apaf-1 but not cytochrome c, which indicated the need to analyze the requirement of cytochrome c beyond the mouse models, and in human tumor cells in particular. In this study, we designed tools to silence cytochrome c expression in human cells and tested these tools in an experimental system of oncogenic transformation. We found that cytochrome c was required for apoptosis induced by both DNA damage and, unexpectedly, TNFalpha. Overall, this study established that cytochrome c is required for apoptosis in human cells and provided tools to dissect mechanisms of apoptosis in various experimental models.  相似文献   

20.
设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号