首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A high concentration (30 μg/ml or more) of Con A caused the death of not only thymocytes but also splenic cells of BALB/c mice, whereas a moderate concentration (3 μg/ml) of Con A induced proliferation of these cells. A high concentration of Con A also induced the death of splenic cells of athymic BALB/c-nu/nu mice and the bone marrow cells of BALB/c mice which mainly consist of non-T cells. However, any concentration (1-30 μg/ml) of Con A failed to induce the proliferation of these cells. Specific binding of tetrameric Con A to mannose-containing receptors was required for the induction of cell death. DNA fragmentation was observed by both laser flow cytometry and electrophoresis in Con A-stimulated T cells and non-T cells. This indicated that the mechanism of induction of apoptosis with Con A is not necessarily TCR-dependent. Con A induced tyrosine phosphorylation of a number of proteins in various types of cells. Interestingly, phosphorylation of the 40 kDa protein developed only in the thymocytes and spleen cells that contain T cells, whereas phosphorylation of the 80 and 120 kDa proteins appeared in both T cells and non-T cells. These results suggested that the Con A-induced apoptosis of T cells and non-T cells involves different but possibly mutually related protein tyrosine phosphorylation-linked signals.  相似文献   

2.
The mechanism of cell death induced by the different waveband regions of ultraviolet radiation (UVR), i.e., UVA1 (340-400 nm), UVB (290-320 nm) and UVC (200-290 nm) was investigated, using equilethal doses (90% reproductive death) on L5178Y-R murine lymphoma cells. To distinguish between necrosis and apoptosis, the following endpoints were monitored over time using flow cytometry and transmission electron microscopy: percentage of remaining cells, membrane permeabilized cells, dead cells, apoptotic cells, and ultrastructural changes. All waveband regions of UVR were found to cause apoptosis as opposed to necrosis. However, UVA1-induced immediate (0-4 h) apoptosis, while UVB- or UVC-induced delayed apoptosis (<34 h). Moreover, the membrane permeability changes that only result from exposure to UVA1 radiation, especially to red blood cells, suggests that the immediate apoptotic mechanism involves membrane damage. Therefore, the results suggest that there are three death mechanisms available to one cell type: necrosis, immediate apoptosis, and delayed apoptosis (or programmed cell death).  相似文献   

3.
BACKGROUND: In this work we studied the relationship between the enhanced expression of DR5 receptor and the effect of combination of TRAIL and ionizing radiation on cell cycle arrest and apoptosis induction in human leukemia cell line HL-60. MATERIAL AND METHODS: DR5, APO2.7 and cell cycle were analyzed by flow cytometry. Proteins Bid and Mcl-1 were analyzed by Western-blotting. For clonogenic survival, colony assay on methylcellulose was used. RESULTS: Ionizing radiation caused significantly enhanced positivity of DR5 receptors 24 h after irradiation with high doses (6 and 8 Gy). An increase of DR5 receptor positivity after a dose of 2 Gy was not statistically significant and application of TRAIL 48 h after irradiation did not increase the apoptosis induction. However, a decrease of radiation-induced G(2) phase arrest and an increase of apoptosis were observed when TRAIL was applied 16 h before irradiation with the dose of 2 Gy. Incubation with 6 microg/l TRAIL for 16 h reduced D(0) value from 2.9 Gy to 1.5 Gy. The induction of apoptosis by TRAIL was accompanied by Bid cleavage and a decrease of antiapoptotic Mcl-1 16 h after incubation with TRAIL. CONCLUSION: TRAIL in concentration of 6 microg/l applied 16 h before irradiation by the dose of 1.5 Gy caused the death of 63% of clonogenic tumor cells, similarly as the dose of 2.9 Gy alone, which is in good correlation with the enhanced apoptosis induction.  相似文献   

4.
Ionizing radiation can be an effective inducer of apoptosis and studies of many aspects of the pathways and mechanisms involved in this apoptosis induction have been published. This review stresses two aspects: the relationship between apoptosis and loss of clonogenic ability in irradiated cells and the time course for the appearance of apoptosis after radiation exposure. Although it was initially assumed that apoptosis occurred relatively quickly (within hours) after irradiation, evidence is presented and discussed here showing that apoptosis can occur at long times after irradiation (out to 20 days) in some cell types. This late, or delayed, apoptosis occurs after the cells have divided once or several times. The impact of delayed apoptosis on loss of clonogenicity after irradiation remains unclear. It seems likely that in some cell types, e.g., fibroblasts, the occurrence of late apoptosis is minimal and may have little impact on long term cell survival of the population, but in at least one instance, with a cell line of hematopoietic origin, it appears that late apoptosis can account for all the loss of clonogenicity in irradiated cells. The role of p53 in radiation-induced apoptosis is also discussed, with data presented showing that both p53-dependent and independent pathways for radiation-induced apoptosis exist, depending on the cell type.  相似文献   

5.
Human promyelocytic leukemia (HL60) cells were irradiated with 10 or 50 Gy of X rays and studied for up to 72 h postirradiation to determine the mode of death and assess changes in the nuclear matrix. After 50 Gy irradiation, cells were found to die early, primarily by apoptosis, while cells irradiated with 10 Gy died predominantly by necrosis. Disassembly of the nuclear lamina and degradation of the nuclear matrix protein lamin B occurred in cells undergoing radiation-induced apoptosis or necrosis. However, using Western blotting and a recently developed flow cytometry assay to detect changes in nuclear matrix protein content, we found that the kinetics and mechanisms of disassembly of the nuclear lamina are different for each mode of cell death. During radiation-induced apoptosis, cleavage and degradation of lamin B to a approximately 28-kDa fragment was detected in most cells within 4-12 h after irradiation. Measurements of dual-labeled apoptotic cells revealed that nonrandom DNA fragmentation was evident prior to or concomitant with breakdown of the nuclear lamina. Disassembly of the nuclear lamina during radiation-induced necrosis occurred much later (between 30-60 h after irradiation), and a different cleavage pattern of lamin B was observed. Degradation of the nuclear lamina was also inhibited in apoptosis-resistant BCL2-overexpressing HL60 cells exposed to 50 Gy until approximately 48 h after irradiation. These data indicate that breakdown of the nuclear matrix may be a common element in radiation-induced apoptosis and necrosis, but that the mechanisms and temporal patterns of breakdown of the nuclear lamina during apoptosis are distinct from those of necrosis.  相似文献   

6.
Themicroenvironmentconstitutedbythymicstromalcellsisanimportantsiteforthedevelopmentofthymocytes.95%ofthymocytesdieinthethymuseveryday,inthewayofapoptosis[1].Thecelldeathismainlycausedbythedefaultofpositiveselectionandtheactionofnegativeselectionswhichar…  相似文献   

7.
BACKGROUND: It is unclear whether expression of newly described mitochondrial Apo2.7 molecules (7A6 antigen) is specific for apoptosis or may also occur in necrosis. METHODS: We incubated human lymphocytes with the apoptosis-inducing mistletoe lectin (ML) I and the cell membrane-permeabilizing viscotoxins (VT), and measured cell death-associated changes by flow cytometry. RESULTS: In ML I-treated lymphocytes, Apo2.7 expression and caspase-3 activation was recognized within 24 h. In VT-treated cells, we observed an Apo2.7 expression with low fluorescence level, while active caspase-3 and DNA fragments (TUNEL) were not detected within 24 h. In these cells, caspase-3 activation was recognized 48 h later. As a major subset of ML-treated cells expressing Apo2.7 molecules did not activated caspase-3, while all caspase-3(+) cells did express Apo2.7, one may suggest that the caspase pathway is activated secondarily to mitochondrial events. CONCLUSIONS: Expression of Apo2.7 is sensitive marker of cell death but may not be specific for apoptosis alone as it can be detected also in cells treated with cell membrane-permeabilizing toxins. On the other hand, this expression may be the consequence of an induction of distinct "death signals" resulting in apoptosis later on.  相似文献   

8.
Thymocyte apoptosis in response to low-dose radiation   总被引:17,自引:0,他引:17  
Thymocyte apoptosis was assessed by counting apoptotic bodies with flow cytometry (FCM) and measuring DNA fragmentation with fluorescence spectrophotometry (FSP). J-shaped dose-response curves were obtained after both whole-body irradiation (WBI) of mice and in vitro irradiation of EL4 cells with doses ranging from 0.025 to 4 Gy X-rays. There was a significant reduction of apoptosis rate to below control level with doses within 0.2 Gy, and a dose-dependent increase in apoptosis with doses above 0.5 Gy. When thymocytes were cultured 24 h after WBI with 75 mGy X-rays in complete RPMI 1640 medium, a reduction in apoptosis was observed in the course of incubation for 72 h, and the presence of Con A in the medium accentuated this reduction in a dose- and time-dependent manner. The implications of these observations and the possible molecular mechanisms for future studies are proposed.  相似文献   

9.
Gamma-irradiation, glucocorticoid hormones, and calcium ionophores stimulate a suicide process in thymocytes, known as apoptosis or programmed cell death, that involves internucleosomal DNA fragmentation by a Ca(2+)- and Mg(2+)-dependent nuclear endonuclease. In this study we report that N-(2-mercaptoethyl)-1,3-propanediamine (WR-1065) blocked DNA fragmentation and cell death in thymocytes exposed to gamma-radiation, dexamethasone, or calcium ionophore A23187. WR-1065 protected the thymocytes from radiation-induced apoptosis when incubated with cells after irradiation but not before and/or during irradiation. WR-1065 inhibited Ca(2+)- and Mg(2+)-dependent DNA fragmentation in isolated thymocyte nuclei. Our results suggest that WR-1065 protects thymocytes from apoptosis by inhibiting Ca(2+)- and Mg(2+)-dependent nuclear endonuclease action.  相似文献   

10.
When the CD4+CD8+ thymic lymphoma cells were treated with puromycin, we found that most of the cells died at 0.3-1 μg/ml of puromycin within 24 h. However, cell death was greatly reduced when the dose of puromycin was increased. Similar dose-pattern of cell death was observed in thymocytes and the sensitivity to puromycin was greater in CD4+CD8+ thymocytes than CD4+CD8 thymocytes. The induction of apoptosis was blocked by the protein synthesis inhibitor cycloheximide, and to some extent by transfection of Bcl-xL or Bcl-2 genes. Expression of GRP78 was up-regulated after treatment with a small dose of puromycin, and the cell death by puromycin was blocked in the presence of caspase 12 inhibitor. These results indicated that the induction of cell death by low-dose puromycin was due to endoplasmic reticulum stress. Furthermore, we found that dexamethasone, a synthetic glucocorticoid, and puromycin worked synergistically to induce cell death in thymocytes.  相似文献   

11.
本文探讨了重组艰难梭菌毒素B(rTcd B)对小鼠结肠癌CT26细胞的诱导凋亡作用。采用不同浓度rTcd B处理CT26细胞, 通过MTT法检测细胞增殖抑制率; 比色法测定Caspase 3活性; 细胞形态学和流式细胞技术检测细胞凋亡。结果表明, rTcd B显著抑制了CT26细胞的增殖, 并呈时间?剂量依赖性; Caspase 3活性在处理6 h后显著升高, 至18 h达到最大值, 与对照组相比差异显著, 具有统计学意义(P<0.05); 荧光显微镜观察到典型细胞凋亡形态学变化, 细胞膜内侧的磷脂酰丝氨酸(PS)异位到了膜外侧, 细胞膜呈明亮的绿色荧光; 通过流式细胞仪检测结果表明, 细胞凋亡率呈时间?剂量依赖性增加。实验结果表明, 重组艰难梭菌毒素B能够诱导小鼠结肠癌CT26细胞凋亡。  相似文献   

12.
T F Ogle  D Dai  P George 《Steroids》1999,64(9):628-633
This study examined the role of protein kinase C enzymatic activity as a physiologic determinant of stromal cell death in decidua basalis (DB) during pregnancy. The expression of epidermal growth factor receptor (EGF-R) and Bcl2 was used as an indicator of stromal cell proliferation/survival, whereas Bax and the occurrence of apoptosis provided an index of cell death. Stromal cell cycle progression during pregnancy and after in vivo administration of phorbol esters was analyzed by flow cytometry. DB were isolated from pregnant rats between Days 8 and 21 of pregnancy and prepared for immunohistochemistry, Western blotting procedures, or flow cytometry. The results showed that stromal cells were actively proliferating on Days 8 and 10, whereas the frequency of cell death by apoptosis increased progressively between Days 14 and 21 (Day 22 is term). The proliferative stage was characterized by low PKC activity and high levels of EGF-R and Bcl2 expression. On the other hand, DB regression (Days 14-21) was marked by an elevation in endogenous PKC activity and Bax expression; EGF-R and Bcl2 were suppressed. Administration of phorbol 12-myristate, 13-acetate (0.4 micromole/kg) induced apoptosis on Day 10. Additionally, antiprogestin (RU-486) given on Day 9 induced PKC activity and Bax expression within 6 h and suppressed Bcl2 and EGF-R. By 12 h, RU-486 enhanced percent apoptotic cells. Thus, enhanced levels of PKC activity were closely linked to stromal cell apoptosis.  相似文献   

13.
Using terminal deoxynucleotide transferase-mediated dUTP-digoxigenin nick end labeling (TUNEL) assay and propidium iodide-DNA staining flow cytometry assay, the effects of mouse thymic dendritic cells (MTSC4) on the process of programmed cell death of thymocytesin vitro were investigated. It was noticed that thymocytes bound to MTSC4 used in this study. That the percentages of apoptotic nuclei of the bound thymocytes on MTSC4 were much higher than those of medium-cultured thymocytes, while the bound thymocytes on mouse thymic epithelial cell (MTEC1) showed much lower percentages of apoptosis. FACS analysis quantitatively confirmed the observation. Phenotype analysis showed that MTSC4 induced the deletion of CD4 + CD8 + cells and CD4 + CD8-.cells in 18 h of coculture. The results suggest that the negative selection of medullary thymocytes may be achieved by thymic dendritic cells through their enhancing effects on apoptosis. Project supported by the National Natural Science Foundation of China (Grant No.39670685) and FokYin Tung Education Foundation.  相似文献   

14.

Background and Purpose

To understand the mechanisms involved in the strong killing effect of carbon-ion beam irradiation on cancer cells with TP53 tumor suppressor gene deficiencies.

Materials and Methods

DNA damage responses after carbon-ion beam or X-ray irradiation in isogenic HCT116 colorectal cancer cell lines with and without TP53 (p53+/+ and p53-/-, respectively) were analyzed as follows: cell survival by clonogenic assay, cell death modes by morphologic observation of DAPI-stained nuclei, DNA double-strand breaks (DSBs) by immunostaining of phosphorylated H2AX (γH2AX), and cell cycle by flow cytometry and immunostaining of Ser10-phosphorylated histone H3.

Results

The p53-/- cells were more resistant than the p53+/+ cells to X-ray irradiation, while the sensitivities of the p53+/+ and p53-/- cells to carbon-ion beam irradiation were comparable. X-ray and carbon-ion beam irradiations predominantly induced apoptosis of the p53+/+ cells but not the p53-/- cells. In the p53-/- cells, carbon-ion beam irradiation, but not X-ray irradiation, markedly induced mitotic catastrophe that was associated with premature mitotic entry with harboring long-retained DSBs at 24 h post-irradiation.

Conclusions

Efficient induction of mitotic catastrophe in apoptosis-resistant p53-deficient cells implies a strong cancer cell-killing effect of carbon-ion beam irradiation that is independent of the p53 status, suggesting its biological advantage over X-ray treatment.  相似文献   

15.
He XY  Li J  Qian XP  Fu WX  Li Y  Wu L  Chen WF 《Cell research》2004,14(2):125-133
Mouse thymic stromal cell line 4 (MTSC4) is one of the stromal cell lines established in our laboratory. While losing the characteristics of epithelial cells, they express some surface markers shared with thymic dendritic cells (TDCs). To further study the biological functions of these cells, we compared the capability of MTSC4 with TDCs in the induction of thymocyte apoptosis, using thymic reaggregation culture system. Apoptosis of thymocytes induced by MTSC4 and TDCs was measured by Annexin V and PI staining and analyzed by flow cytometry. We found that MTSC4 selectively augmented the apoptosis of CD4^ 8^ (DP) thymocytes. This effect was Fas/FasL independent and could not be blocked by antibodies to MHC class I and class II molecules. In addition, MTSC4 enhanced the apoptosis of DP thymocytes from different strains of mice, which implies that MTSC4-induced thymocyte apoptosis is not mediated by the TCR recognition of self peptide/MHC molecules. In contrast to MTSC4, thymocyte apoptosis induced by TDCs was MHC-restricted. Thus, MHC-independent fashion of stromal-DP thymocyte interaction may be one of the ways to induce thymocyte apoptosis in thymus. Our study has also shown that the interaction of MTSC4 stromal cells and thymocytes is required for the induction of thymocyte apoptosis.  相似文献   

16.
Using flow cytometry, we describe a method for separating and quantifying normal and apoptotic thymocytes. Apoptosis was induced in isolated thymocytes from immature rats by treatment with the glucocorticoid dexamethasone or the antitumor agent etoposide. Subsequent incubation with the vital bisbenzimidazole dye Hoechst 33342 and the DNA intercalating agent propidium iodide enabled three distinct populations of cells to be identified and sorted by flow cytometry. Dead cells fluoresced red due to propidium iodide whereas normal and apoptotic cells fluoresced blue due to Hoechst 33342. Apoptotic cells were distinguished from normal thymocytes both by their higher intensity of blue fluorescence and by their smaller size as determined by a reduction in forward light scatter. The larger cells, with low blue fluorescence, showed normal thymocyte morphology by electron microscopy and the absence of any DNA fragmentation as measured by agarose gel electrophoresis. In contrast, the smaller cells showed both the morphological characteristics of apoptosis and extensive internucleosomal fragmentation of DNA to multiples of approximately 180 bp. Using this method, a time-dependent induction of apoptosis by dexamethasone, which was inhibited by cycloheximide, actinomycin D, and aurin tricarboxylate, was observed. The method should facilitate mechanistic studies on the induction of apoptosis in thymocytes.  相似文献   

17.
Apoptoticthymocytesweredetectedinsituinthethymus[1],whiletheeffectsofthymicstromalcellsontheprocessofcelldeathofthymocytesarestillunclear.Wepreviouslyfoundthatmousethymicdendriticcells(MTSC4)enhancedtheapoptosisofthymocytesinvitro[2],andtheseeffectsweredep…  相似文献   

18.
The mechanism of apoptotic cell volume decrease was studied in rat thymocytes treated with dexamethasone (Dex) or etoposide (Eto). Cell shrinkage, i.e. dehydration, was quantified by using buoyant density of the thymocytes in a continuous Percoll gradient. The K+ and Na+ content of cells from different density fractions were assayed by flame emission analysis. Apoptosis was tested by microscopy and flow cytometry of acridine orange stained cells as well as by flow DNA cytometry. Treatment of the thymocytes with 1 microM Dex for 4-5.5 h or 50 microM Eto for 5 h resulted in the appearance of a new distinct high-density cell subpopulation. The cells from this heavy subpopulation but not those with normal buoyant density had typical features of apoptosis. Apoptotic increase of cell density was accompanied by a decrease in cellular K+ content, which exceeded the simultaneous increase in cellular Na+ content. Cellular loss of K+ contributed to most of the estimated loss of cellular osmolytes, but owing to the parallel loss of cell water, the decrease in cytosolic K+ concentration was less than one third. Due to gain of Na+ and loss of cell water the cytosolic Na+ concentration in thymocytes rose following treatment with Dex (5.5 h) or Eto (5 h) by a factor of about 3.6 and 3.1, respectively.  相似文献   

19.

Background

We have investigated the potential anticancer effects of karanjin, a principal furanoflavonol constituent of the Chinese medicine Fordia cauliflora, using cytotoxic assay, cell cycle arrest, and induction of apoptosis in three human cancer cell lines (A549, HepG2 and HL-60 cells).

Results

MTT cytotoxic assay showed that karanjin could inhibit the proliferation and viability of all three cancer cells. The induction of cell cycle arrest was observed via a PI (propidium iodide)/RNase Staining Buffer detection kit and analyzed by flow cytometry: karanjin could dose-dependently induce cell cycle arrest at G2/M phase in the three cell lines. Cell apoptosis was assessed by Annexin V-FITC/PI staining: all three cancer cells treated with karanjin exhibited significantly increased apoptotic rates, especially in the percentage of late apoptosis cells.

Conclusion

Karanjin can induce cancer cell death through cell cycle arrest and enhance apoptosis. This compound may be effective clinically for cancer pharmacotherapy.  相似文献   

20.
Male germ cells are susceptible to radiation-induced injury, and infertility is a common problem after total-body irradiation. Here we investigated, first, the effects of irradiation on germ cells in mouse testis and, second, the role of sphingosine-1-phosphate (S1P) treatment in radiation-induced male germ cell loss. Irradiation of mouse testes mainly damaged the early developmental stages of spermatogonia. The damage was seen by means of DNA flow cytometry 21 days after irradiation as decreasing numbers of spermatocytes and spermatids with increasing amounts of ionizing radiation (0.1-2.0 Gy). Intratesticular injections of S1P given 1-2 h before irradiation (0.5 Gy) did not protect against short-term germ cell loss as measured by in situ end labeling of DNA fragmentation 16 h after irradiation. However, after 21 days, in the S1P-treated testes, the numbers of primary spermatocytes and spermatogonia at G2 (4C peak as measured by flow cytometry) were higher at all stages of spermatogenesis compared with vehicle-treated testes, indicating protection of early spermatogonia by S1P, whereas the spermatid (1C) populations were similar. In conclusion, S1P appears to protect partially (16%-47%) testicular germ cells against radiation-induced cell death. This warrants further studies aimed at development of therapeutic agents capable of blocking sphingomyelin-induced pathways of germ cell loss.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号