首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
AIM: This work determines the efficiency of trehalose on the preservation by heat or osmotic drying of a strain of Lactobacillus delbrueckii ssp. bulgaricus. Cell recovery at different trehalose concentrations during drying correlated with the surface properties and osmotic response of cells after rehydration. METHODS AND RESULTS: Bacteria were dried in the presence of glycerol, trehalose, sucrose at 70 degrees C and at 20 degrees C. Trehalose attenuates the loss of viability at 0.25 m. At this concentration, the osmotic response and zeta potential of the bacteria were comparable with the nondried ones. CONCLUSIONS: Trehalose diminishes significantly the damage produced by dehydration both when the bacteria are dried by heating or subjected to osmotic dehydration. This effect appears related to the preservation of the permeability to water and the surface potential of the bacteria. SIGNIFICANCE AND IMPACT OF THE STUDY: Dehydration occurring during heating or during osmosis appears to have similar effects. As dehydration-induced damage is in correlation with osmotic response recovery and is hindered or buffered by the presence of trehalose, it may be related to water eliminated from biological structures involved in water permeation.  相似文献   

2.
AIMS: Although the practical importance of adding sugars before drying is well known, the mechanism of protection of bacteria by sugars is not clear. The response of the dehydrated micro-organisms to rehydration is analysed in terms of structural and functional changes, and correlated with their potentiality to grow in rich media. These aspects are related with the membrane integrity and the metabolic state of the rehydrated bacteria, measured by means of surface properties and permeability. To attain this objective, Lactobacillus delbrueckii subsp. bulgaricus was dehydrated in the presence and in the absence of sucrose and trehalose. The bacterial response upon rehydration was investigated by determining: (i) the lag time of the bacterial growing in rich media, (ii) the restoration of the surface properties and the cellular volume and (iii) the membrane integrity. METHODS AND RESULTS: Lactobacillus delbrueckii subsp. bulgaricus was grown in MRS at 37 degrees C overnight [De Man et al. (1960)J Appl Bacteriol 23, 130] and then dehydrated for 10, 20 and 30 min at 70 degrees C in a vacuum centrifuge. The lag time of micro-organisms was determined by optical density changes after rehydration. The surface properties were determined by measuring the zeta potential of the bacteria suspended in aqueous solution. The cellular volume recovery was measured, after stabilization in saline solution, by light scattering and by the haematocrit method [Alemohammad and Knowles (1974)J Gen Microbiol 82, 125]. Finally, the membrane integrity has been determined by using specific fluorescent probes [SYTO 9 and propidium iodide, (PI)] that bind differentially depending on the integrity of the bacterial membrane. The lag time of Lact. delbrueckii subsp bulgaricus, dehydrated by heat in the presence of sucrose or trehalose and after that rehydrated, was significantly shortened, when compared with that obtained for bacteria dried in the absence of sugars. In these conditions, trehalose and sucrose maintained the zeta potential and the cell volume close to the control (nondried) cells. However, the membrane integrity, measured with fluorescent probes, was maintained only when cells were dehydrated for 10 min in the presence of sugars. For larger times of dehydration, the membrane integrity was not preserved, even in the presence of sugars. CONCLUSIONS: When the micro-organisms are dehydrated in the absence of protectants, the membrane damage occurs with a decrease in the absolute value of the zeta potential and a decrease in the cellular volume recovered after rehydration. In contrast, when the zeta potential and the cellular volume are restored after rehydration to that corresponding to nondried cells, the micro-organisms are able to recover and grow with a reduced lag time. This can only be achieved when the dehydration is carried out in the presence of sugars. At short dehydration times, the response is associated with the preservation of the membrane integrity. However, for longer times of dehydration the zeta potential and volume recovery occurs in the presence of sugars in spite of a severe damage at membrane level. In this condition, cells are also recovered. In conclusion, to predict the ability of growing after dehydration, other bacterial structural parameters besides membrane integrity, such as zeta potential and cellular volume, should be taken into account. SIGNIFICANCE AND IMPACT OF THE STUDY: The correlation of the lag time with the surface and permeability properties is of practical importance because the correlation of these two parameters with cell viability, allow to determine the potential bacterial capacity to grow in a rich medium after the preservation procedure, without necessity of performing a kinetic curve of growth, which is certainly time-consuming.  相似文献   

3.
AIMS: Nutritional requirements of Lactobacillus fermentum Ogi E1 were studied in order to define a simplified fermentation medium. METHODS AND RESULTS: When grown with MRS-medium in 2l bioreactors, a biphasic pattern of growth and metabolite production was observed. Study of nutritional requirements resulted in a simplified medium (SYAM) that allowed, under anaerobiosis, similar results to be obtained as in MRS medium, but without biphasic fermentation kinetics. The best substrates for both growth and amylase production were starch and maltose. Although melibiose, raffinose, fructose, sucrose and glucose also supported growth, lower amylase activity was observed. CONCLUSION: The physiology of the strain can be investigated with SYAM medium, using either starch or maltose as substrate. The strain also presented potential for alpha-galactoside fermentation. SIGNIFICANCE AND IMPACT OF THE STUDY: Lactobacillus fermentum was one of the dominant bacteria of African maize dough fermentations. Amylolytic strains with activity against other compounds (i.e. raffinose) suggested a potential to be used as starter for cereal fermentation.  相似文献   

4.
AIMS: To investigate the effects of two prebiotics and trehalose on the production of bacteriocins. METHODS AND RESULTS: Four carbohydrates [dextrose, fructo-oligosaccharides (FOS), raffinose, and trehalose] were used as the sole carbon source in a simple broth. Five bacteriocin-producing strains of bacteria, including those producing nisin, enteriocin, and other bacteriocins, were used, and their inhibitory activities when grown on each carbohydrate were determined. The inhibitory activity assay was performed using the agar well diffusion method, and Lactobacillus sakei JCM 1,157(T) was used as the indicator strain. Effective enhancement of bacteriocin production was observed with FOS and trehalose incubation. CONCLUSIONS: The results suggest that FOS and trehalose can effectively enhance the production of the five kinds of bacteriocins evaluated in this study. SIGNIFICANCE AND IMPACT OF THE STUDY: This study offers useful information for not only a new application of FOS and trehalose, but also the potential improvement of food preservation.  相似文献   

5.
Long-term preservation of bioreporter bacteria is essential for the functioning of cell-based detection devices, particularly when field application, e.g., in developing countries, is intended. We varied the culture conditions (i.e., the NaCl content of the medium), storage protection media, and preservation methods (vacuum drying vs. encapsulation gels remaining hydrated) in order to achieve optimal preservation of the activity of As (III) bioreporter bacteria during up to 12 weeks of storage at 4°C. The presence of 2% sodium chloride during the cultivation improved the response intensity of some bioreporters upon reconstitution, particularly of those that had been dried and stored in the presence of sucrose or trehalose and 10% gelatin. The most satisfying, stable response to arsenite after 12 weeks storage was obtained with cells that had been dried in the presence of 34% trehalose and 1.5% polyvinylpyrrolidone. Amendments of peptone, meat extract, sodium ascorbate, and sodium glutamate preserved the bioreporter activity only for the first 2 weeks, but not during long-term storage. Only short-term stability was also achieved when bioreporter bacteria were encapsulated in gels remaining hydrated during storage.  相似文献   

6.
AIMS: The aim of this study was to optimize survival of Lactobacillus delbrueckii subsp. bulgaricus during spray-drying and subsequent storage through optimizing the pH of growth conditions. METHODS AND RESULTS: Cell concentrates previously grown without or with pH controlled were spray-dried and stored at 20 degrees C and heat treated at 57 degrees C. Cells grown under noncontrolled pH were more resistant to both drying and heating than cells grown under controlled pH but no significant differences were observed during storage. The intracellular proteins profile of cells grown under both conditions was studied by two-dimensional SDS-polyacrylamide gel electrophoresis. Eight proteins were identified using automated mass spectrometry (MS) and tandem mass spectrometry (MS/MS) data acquisition. Of the identified proteins, only cochaperonin GroES corresponded to a known heat shock protein (HSP). The other proteins identified are proteins involved in glycolysis. For cells grown under noncontrolled pH the expression of the Hsp70, GroES and GroEL, measured by Western blotting, was enhanced. CONCLUSIONS: The higher resistance of cells grown under noncontrolled pH correlates with the enhanced production of heat shock proteins. SIGNIFICANCE AND IMPACT OF THE STUDY: Growth of L. bulgaricus under controlled pH (commonly used by the starter cultures production industry) results in cells more sensitive to stresses frequently encountered by the cells during starter cultures preparation/storage/utilization.  相似文献   

7.
Aims:  To investigate the effects of the medium and cryoprotective agents used on the growth and survival of Lactobacillus plantarum and Lactobacillus rhamnosus GG during freeze drying.
Methods and Results:  A complex medium was developed consisting primarily of glucose, yeast extract and vegetable-derived peptone. Trehalose, sucrose and sorbitol were examined for their ability to protect the cells during freeze drying. Using standardized amount of cells and the optimized freeze drying media, the effect of the growth medium on cell survival during freeze drying was investigated. The results showed that glucose and yeast extract were the most important growth factors, while sucrose offered better protection than trehalose and sorbitol during freeze drying. When the cells were grown under carbon limiting conditions, their survival during freeze drying was significantly decreased.
Conclusions:  A clear relationship was observed between cell growth and the ability of the cells to survive during the freeze drying process.
Significance and Impact of the Study:  The survival of probiotic strains during freeze drying was shown to be dependent on the cryoprotectant used and the growth medium.  相似文献   

8.
AIMS: To improve viability and biocontrol efficacy of Cryptococcus laurentii after freeze drying and in subsequent storage. METHODS AND RESULTS: Viability of C. laurentii was improved after freeze drying and in subsequent storage at 4 or 25 degrees C by using skimmed milk (SM) and sugars (glucose, galactose, sucrose and trehalose) as protectants. Sugars and SM mixed together showed better protection than when they were used separately. Citric acid used as carbon source could induce accumulation of intracellular trehalose in the yeast. The yeast cells with high trehalose level (HT cells) had higher viability than those with low trehalose level (LT cells) after freeze drying and storage for 90 days. After storage for 90 days at 4 degrees C, the HT cells plus SM and sugars as protectant showed a similar biocontrol effect against blue mould rot in apple fruit caused by Penicillium expansum as fresh cells. CONCLUSIONS: Increasing intracellular trehalose content of C. laurentii and adding exogenous protectant (sugars + SM) could improve its viability and maintain its biocontrol efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY: The results have a potential value for commercial application of C. laurentii.  相似文献   

9.
AIMS: To study the influence of culture preservation methods and culture conditions on the production of the mycotoxins patulin and citrinin by Penicillium expansum. METHODS AND RESULTS: Ten strains of Penicillium expansum were preserved using subculture and maintenance at 4 degrees C, mineral oil, drying on silica gel and freeze-drying. Patulin and citrinin production was assessed on yeast extract sucrose agar (YES) and grape juice agar (GJ), using TLC before and after 0.5, 2-3, 6 and 12 months preservation. Citrinin was detected in all cultures for all preservation techniques on YES. The patulin profiles obtained differed with strain and culture media used. CONCLUSIONS: Citrinin production seems to be a stable character for the tested strains. There is a tendency for patulin detection with time apparently more consistent for silica gel storage and freeze-drying, especially when the strains are grown on GJ. SIGNIFICANCE AND IMPACT OF THE STUDY: Variability in the profiles of the mycotoxins tested seems to be more strain-specific than dependent on the preservation technique used.  相似文献   

10.
AIMS: To assess four carbohydrates for the protective effect against Lactobacillus helveticus cells inactivation during vacuum drying, and to study the effect of selected carbohydrate on changes of inactivation kinetics. METHODS AND RESULTS: Early stationary phase L. helveticus cells grown in MRS media were recovered from fermentation broth, washed with PBS buffer (pH 7.0), and then mixed with different concentrations of four carbohydrates, namely lactose, sorbitol, inulin, and xanthan gum. Cells were dried in a vacuum drier at 100 mbar, 43 degrees C for 12 h. Only cells with 1% sorbitol addition showed higher survival (18%) over cells without added carbohydrate (8%). Using in situ microbalance technique whereby cell weight during vacuum drying was continuously monitored via precision balances integrated into the vacuum chamber, drying and inactivation kinetics of cells and cells mixed with sorbitol were established. CONCLUSION: Survival of L. helveticus during the vacuum drying could be improved by the addition of optimal concentration of 1% sorbitol. Addition of sorbitol did not cause drastic changes in drying rate, water content and water activity of samples. The protection mechanisms of sorbitol seemed not to be due to a direct physical effect, which could be related to drying rate. SIGNIFICANCE AND IMPACT OF THE STUDY: The increase in survival of cells after vacuum drying by the addition of a protective carbohydrate may provide an alternative mean to preserve starter cultures at a higher level of activity.  相似文献   

11.
Aims: The frozen and dehydrated state transitions of lactose and trehalose were determined and studied as factors affecting the stability of probiotic bacteria to understand physicochemical aspects of protection against freezing and dehydration of probiotic cultures. Methods and Results: Lactobacillus rhamnosus GG was frozen (–22 or –43°C), freeze‐dried and stored under controlled water vapour pressure (0%, 11%, 23% and 33% relative vapour pressure) conditions. Lactose, trehalose and their mixture (1 : 1) were used as protective media. These systems were confirmed to exhibit relatively similar state transition and water plasticization behaviour in freeze‐concentrated and dehydrated states as determined by differential scanning calorimetry. Ice formation and dehydrated materials were studied using cold‐stage microscopy and scanning electron microscopy. Trehalose and lactose–trehalose gave the most effective protection of cell viability as observed from colony forming units after freezing, dehydration and storage. Enhanced cell viability was observed when the freezing temperature was ?43°C. Conclusions: State transitions of protective media affect ice formation and cell viability in freeze‐drying and storage. Formation of a maximally freeze‐concentrated matrix with entrapped microbial cells is essential in freezing prior to freeze‐drying. Freeze‐drying must retain a solid amorphous state of protectant matrices. Freeze‐dried matrices contain cells entrapped in the protective matrices in the freezing process. The retention of viability during storage seems to be controlled by water plasticization of the protectant matrix and possibly interactions of water with the dehydrated cells. Highest cell viability was obtained in glassy protective media. Significance and Impact of the Study: This study shows that physicochemical properties of protective media affect the stability of dehydrated cultures. Trehalose and lactose may be used in combination, which is particularly important for the stabilization of probiotic bacteria in dairy systems.  相似文献   

12.
AIMS: A major reason for the ineffectiveness of legume inoculants in the field is the rapid death of rhizobia because of desiccation. The major purpose of this study was to identify conditions under which alpha,alpha-trehalose would improve survival of Bradyrhizobium japonicum during desiccation. METHODS AND RESULTS: Trehalose was added to cultures just prior to desiccation or was supplied to bacteria during the 6-day growth period. A wide variety of trehalose concentrations was tested. Trehalose added to cultures at the time of desiccation improved survival slightly, but trehalose loading during growth was much more effective in protection against desiccation. Growth of bacteria with 3 mmol l-1 trehalose increased trehalose concentration in cells by about threefold and increased survival of cells placed on soya bean [Glycine max (L.) Merr.] seeds by two- to four-fold after 2 or 24 h. Average of overall results indicate that growth of bacteria with trehalose in the medium resulted in a 294% increase in survival after 24 h of desiccation. The concentration of trehalose in cells was very highly correlated with survival of bacteria. When trehalose-loaded cells were suspended in buffer or water, 60-85% of cellular trehalose was lost in about 1 h and, in spite of these losses, survival during desiccation was not reduced. CONCLUSIONS: Accumulation of trehalose in the cytoplasm is critical to the survival of B. japonicum during desiccation. Increasing the periplasmic concentration of trehalose is also beneficial but is not so critical as the concentration of trehalose in the cytoplasm. Because B. japonicum cannot utilize trehalose as a carbon source, cells can be loaded with trehalose by providing the disaccharide during the growth period. SIGNIFICANCE AND IMPACT OF THE STUDY: Although it may not be practical to use trehalose as a carbon source in inoculant production, it may be possible to engineer greater trehalose accumulation in rhizobia. Trehalose concentration in cells should be a useful predictor of survival during desiccation.  相似文献   

13.
AIMS: To study the improvement of tolerance to low water activity (aw) and desiccation during spray drying in Pantoea agglomerans cells subjected to mild osmotic stress during growth. METHODS AND RESULTS: The micro-organism was cultured in an unmodified liquid (control) or in aw-modified media, and viability of these cells was evaluated on unstressed (0.995) and 0.96 aw stressed solid media, in order to check total viability and aw stress tolerance respectively. Significant improvements in viability on unmodified medium were observed with cells grown for 24 h in NaCl 0.98 aw, glycerol 0.98 aw and 0.97 aw and for 48 h in NaCl 0.98 aw and 0.97 aw modified media. Both yield improvements and water stress tolerance were achieved with low aw media. Cells grown for 24 h in NaCl 0.98 aw or for 48 h in NaCl 0.98 aw, 0.97 aw and 0.96 aw, glucose 0.97 aw and glycerol 0.97 aw showed improved aw stress tolerance in comparison with control cells. The best results were obtained with NaCl treatments (0.98 aw and 0.97 aw) which also exhibited better survival rates than control cells during spray-drying process and maintained their efficacy against postharvest fungal pathogens in apples and oranges. CONCLUSIONS: NaCl treatments are very appropriate for improving P. agglomerans low aw tolerance obtaining high production levels and maintaining biocontrol efficacy. SIGNIFICANCE AND IMPACT OF THE STUDY: Improving stress tolerance of biocontrol agents could be an efficient way to obtain consistency and maintain efficacy of biological control under practical conditions.  相似文献   

14.
The ability to cryopreserve a stage of Anopheles mosquitoes would facilitate the development of strains incapable of transmitting malaria. Cryopreservation requires that the freezable water in cell systems be removed or rendered incapable of undergoing ice formation. The present study was concerned with the rate at which water is removed from lst instar larvae of Anopheles gambiae by air-drying, with the extent of dehydration that the larvae will tolerate, and with the effect of trehalose and sucrose on both drying kinetics and survival. Eighty-one percent of the larvae are water. Air-drying removes 90% of that water in approximately 20 min. Survivals after partial dehydration are highest if the larvae are rehydrated in 1/2x isotonic saline (0.13 osm); they are poorest if rehydrated in water or 0.13 osm sucrose. In the former, about 34% survive the removal of half the water, but next to none survive the loss of >70% initial water. Prior exposure to 0.2 M trehalose for as little as 1 min slows the drying rate and increases the tolerance of the larvae to dehydration. With 30-min exposure, 88% survive the loss of 50% of their water and 63% survive the loss of 75%. Protection is abolished with 0.4 M trehalose. The results are similar with sucrose. It is substantially reduced if sugar-exposed larvae are briefly washed with water prior to drying. The protection appears not to be related to the decreased drying rate. Rather it appears related, by an unknown mechanism, to the presence of sugar on the outer surface of the larvae.  相似文献   

15.
AIMS: Screening of five bile salt-resistant and low pH-tolerant lactic acid bacteria for inhibitory activity against lactic acid bacteria and bacterial strains isolated from the faeces of children with HIV/AIDS. Determining the effect of prebiotics and soy milk-base on cell viability and adhesion of cells to intestinal mucus. METHODS AND RESULTS: Lactobacillus plantarum 423, Lactobacillus casei LHS, Lactobacillus salivarius 241, Lactobacillus curvatus DF 38 and Pediococcus pentosaceus 34 produced the highest level of antimicrobial activity (12,800 AU ml(-1)) when grown in MRS broth supplemented with 2% (m/v) dextrose. Growth in the presence of Raftilose Synergy1, Raftilose L95 and Raftiline GR did not lead to increased levels of antimicrobial activity. Cells grown in the presence of Raftilose Synergy1 took longer to adhere to intestinal mucus, whilst cells grown in the absence of prebiotics showed a linear rate of binding. CONCLUSIONS: A broad range of gram-positive and gram-negative bacteria were inhibited. Dextrose stimulated the production of antimicrobial compounds. Adhesion to intestinal mucus did not increase with the addition of prebiotics. SIGNIFICANCE AND IMPACT OF THE STUDY: The strains may be incorporated in food supplements for HIV/AIDS patients suffering from gastro-intestinal disorders.  相似文献   

16.
AIMS: The propionibacteria are commercially important due to their use in the cheese industry, and there is a growing interest for their probiotic effects. Stimulatory effects of lactic acid bacteria (LAB) on propionic acid bacteria have been observed. This study was designed to examine the possibility of using spent media previously used to grow LAB for the production of biomass and metabolites of Propionibacterium freudenreichii subsp. shermanii. METHODS AND RESULTS: Seventeen MRS and vegetable juice media were prefermented by various LAB and evaluated for their ability to subsequently support the growth of Propionibacterium, using automated spectrophotometry (AS). Growth of Propionibacterium in spent media was strongly affected by the LAB strain used to produce the spent medium. The native MRS medium (not prefermented) yielded the highest optical density values followed by prefermented media by Lactobacillus acidophilus, Bifidobacterium longum and Lactococcus lactis. Prefermented cabbage juice enabled good growth of Propionibacterium. For the production of organic acids and vitamin B12, cells of Propionibacterium were concentrated and immobilized in alginate beads in the aim of accelerating the bioconversions. More propionic acid was obtained in spent media than in native MRS. The concentration of vitamin B12 was higher in media fermented with free cells than those with immobilized cultures; with the free cells, its concentration varied from 900 to 1800 ng ml(-1) of media. CONCLUSIONS: It was demonstrated that spent media could be recycled for the production of Propionibacterium and metabolites, depending on the LAB strain that was previously grown. Media remediation is needed to improve the production of vitamin B12, especially with immobilized cells. SIGNIFICANCE AND IMPACT OF THE STUDY: This study presents an option for recycling of spent media generated by producers of LAB or producers of fermented vegetables. The propionic fermentation may result in three commercial products: biomass, vitamin B12 or organic acids, which may be used as starters, supplements or food preservatives. It is an attractive process from economical and environmental standpoints.  相似文献   

17.
AIM: The changes produced on the bacterial surface of Bifidobacteria cells when they are grown in bile were compared with those provoked by bile added to bacteria grown in the absence of bile. METHODS AND RESULTS: The adhesive properties, the zeta potential and the lipid composition of Bifidobacterial strains, isolated from human faeces and grown in MRS medium, were determined. Bacteria grown in MRS with bile showed a loss of adherence and autoaggregation in correlation with a decrease in the surface hydrophobicity in comparison to those grown in MRS without bile, concomitant with the absence of two glycolipids, the increase of sugar content and minor changes in fatty acid composition. The surface changes caused by bile shock on bacteria grown in bile-free medium were much less pronounced and, in addition, no effect on the lipid composition was apparent. CONCLUSIONS: The comparison of the results indicates that bile action on surface properties is related to metabolic changes. SIGNIFICANCE AND IMPACT OF THE STUDY: Long-term exposure of bacteria to bile may cause metabolic changes affecting their adhesive properties irreversibly. This may be taken as a criterion to define the probiotic properties of different strains.  相似文献   

18.
The aim of this research effort was to investigate the role of various sugar substrates in the growth medium upon thermotolerance and upon survival during storage after freeze-drying of Lactobacillus bulgaricus. Addition of the sugars tested to the growth medium, and of these and sorbitol to the drying medium (skim milk) was investigated so as to determine whether a relationship exists between growth and drying media, in terms of protection of freeze-dried cells throughout storage. The lowest decrease in viability of L. bulgaricus cells after freeze-drying was obtained when that organism was grown in the presence of mannose. However, L. bulgaricus clearly survived better during storage when cells had been grown in the presence of fructose, lactose or mannose rather than glucose (the standard sugar in the growth medium). A similar effect could not be observed in terms of thermotolerance; in this case, the growth medium supplemented with lactose was found to yield cells bearing the highest heat resistance. Supplementation of the drying medium with glucose, fructose, lactose, mannose or sorbitol led in most cases to enhancement of protection during storage, to a degree that was growth medium-dependent.  相似文献   

19.
The mechanism of inactivation of Lactobacillus bulgaricus due to freeze drying was investigated. Cells were freeze-dried in skim milk powder, maltodextrin, glycerol, trehalose and water. Results are presented confirming previous authors'observations regarding membrane damage during freeze drying. In an attempt to define more clearly the nature of this damage, further experiments were carried out. Results show that following freeze drying changes occur in the unsaturated: saturated fatty acid ratio, a decrease in the activity of the membrane-bound enzyme ATPase and a loss of ΔpH.  相似文献   

20.
The hyperthermophilic marine archaeon Thermococcus litoralis exhibits high-affinity transport activity for maltose and trehalose at 85 degrees C. The K(m) for maltose transport was 22 nM, and that for trehalose was 17 nM. In cells that had been grown on peptone plus yeast extract, the Vmax for maltose uptake ranged from 3.2 to 7.5 nmol/min/mg of protein in different cell cultures. Cells grown in peptone without yeast extract did not show significant maltose or trehalose uptake. We found that the compound in yeast extract responsible for the induction of the maltose and trehalose transport system was trehalose. [14C]maltose uptake at 100 nM was not significantly inhibited by glucose, sucrose, or maltotriose at a 100 microM concentration but was completely inhibited by trehalose and maltose. The inhibitor constant, Ki, of trehalose for inhibiting maltose uptake was 21 nM. In contrast, the ability of maltose to inhibit the uptake of trehalose was not equally strong. With 20 nM [14C]trehalose as the substrate, a 10-fold excess of maltose was necessary to inhibit uptake to 50%. However, full inhibition was observed at 2 microM maltose. The detergent-solubilized membranes of trehalose-induced cells contained a high-affinity binding protein for maltose and trehalose, with an M(r) of 48,000, that exhibited the same substrate specificity as the transport system found in whole cells. We conclude that maltose and trehalose are transported by the same high-affinity membrane-associated system. This represents the first report on sugar transport in any hyperthermophilic archaeon.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号