首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Nanoindentation and storage of teeth   总被引:10,自引:0,他引:10  
This study determined changes in nanomechanical properties of dentin and enamel during storage in deionized water, calcium chloride buffered saline solution and Hank's balanced salts solution (HBSS). Atomic force microscopy based nanoindentation showed that storing teeth in deionized water or CaCl(2)-solution resulted in a large decrease in elastic modulus and hardness. At 1 day a decrease in the mechanical properties values of up to 20% and 30% was observed for enamel and dentin, respectively. After 1 week, mechanical properties dropped below 50% of their starting values, which is attributed to a demineralization process during storage. In contrast, storing teeth in HBSS did not significantly alter the mechanical properties for a time interval of 2 weeks. The use of HBSS for storage of samples from teeth is recommended.  相似文献   

2.
The common morphological metrics of size, shape, and enamel thickness of teeth are believed to reflect the functional requirements of a primate's diet. However, the mechanical and material properties of enamel also contribute to tooth function, yet are rarely studied. Substantial wear and tooth loss previously documented in Lemur catta at the Beza Mahafaly Special Reserve suggests that their dental morphology, structure, and possibly their enamel are not adapted for their current fallback food (the mechanically challenging tamarind fruit). In this study, we investigate the nanomechanical properties, mineralization, and microstructure of the enamel of three sympatric lemur species to provide insight into their dietary functional adaptations. Mechanical properties measured by nanoindentation were compared to measurements of mineral content, prism orientation, prism size, and enamel thickness using electron microscopy. Mechanical properties of all species were similar near the enamel dentin junction and variations correlated with changes in microstructure (e.g., prism size) and mineral content. Severe wear and microcracking within L. catta's enamel were associated with up to a 43% reduction in nanomechanical properties in regions of cracking versus intact enamel. The mechanical and material properties of L. catta's enamel are similar to those of sympatric folivores and suggest that they are not uniquely mechanically adapted to consume the physically challenging tamarind fruit. An understanding of the material and mechanical properties of enamel is required to fully elucidate the functional and ecological adaptations of primate teeth.  相似文献   

3.
Teeth contain several calcified tissues with junctions that provide interfaces between dissimilar tissues. These junctions have been difficult to characterize because of their small size. In this work a new technique using a combination of atomic force microscopy (AFM) and a force-displacement transducer was used to simultaneously study the surface topography and map mechanical properties of the junctions and adjacent hard tissues. Prepared specimens from human third molars were scanned by an AFM piezo-tube in contact mode. To measure the dynamic viscoelastic properties of the material a small sinusoidal force was superimposed on the contact force and the resulting displacement amplitude and the phase shift between the force and amplitude were measured. This force modulation technique was used to map the local variation of nanomechanical properties of intertubular dentin, peritubular dentin, enamel, dentin-enamel junction (DEJ) and peritubular-intertubular dentin junction (PIJ). This new technique allowed us to measure the widths of these junctions in addition to local variation in dentin and enamel without causing plastic deformation to the material and with 2 orders of magnitude increase in spatial resolution compared with previous studies that used discrete nanoindentation techniques. Due to the ability to analyze the sample line-by-line, the distribution functions associated with the width of the DEJ and PIJ were conveniently obtained for specific intratooth locations. The data suggested, for three third molar specimens, a DEJ width of 2-3 microm with full-width half-maximum (FWHM) of 0.7 microm and PIJ width of 0.5-1.0 microm with 0.3 microm FWHM. The intertubular dentin storage modulus variation was between 17 and 23 GPa with a mean value of 21 GPa. The range of storage modulus for enamel near the DEJ was between 51 and 74 GPa with a mean value of 63 GPa.  相似文献   

4.
The influence of the operating conditions used in the bleaching of olive wood trimmings pulp (viz. hydrogen peroxide concentration and time) on the yield, kappa index and viscosity of the resulting pulp and on strength-related properties of paper sheets was studied to determine the optimal bleaching conditions of this pulp. Hydrogen peroxide bleached pulps at different sequences (oxygen, ozone, chlorine dioxide and alkaline extractions) were compared. Hydrogen peroxide bleaching proved to be suitable for this pulp. Considerable improvements in viscosity were obtained with respect to other bleaching sequences such as oxygen, ozone and chlorine dioxide. Hydrogen peroxide bleaching decreased the kappa index 51.3% less than ozone bleaching, 25.0% less than chlorine dioxide (D) and 6.3% less combined chlorine dioxide-alkaline extraction (DE). To obtain kappa indices 50.9% and 37.9% lower than the index achieved by hydrogen peroxide, oxygen (LaO(p)) and ozone (LaO(LaZ)R) sequences respectively were needed. Lower-medium levels of hydrogen peroxide concentrations (1-3%) and high reaction times (210 min) proved to be suitable for bleaching of pulp olive trimming residues. This approach could be used on this residue to produce adequately bleached pulp.  相似文献   

5.
Novel highly functional biobased epoxy compounds, epoxidized sucrose esters of fatty acids (ESEFAs), were cross-linked with a liquid cycloaliphatic anhydride to prepare polyester thermosets. The degree of cure or conversion was studied using differential scanning calorimetry (DSC), and the sol content of the thermosets was determined using solvent extraction. The mechanical properties were studied using tensile testing to determine Young's modulus, tensile stress, and elongation at break. Dynamic mechanical analysis (DMA) was used to determine glass-transition temperature, storage modulus, and cross-link density. The nanomechanical properties of the surfaces were studied using nanoindentation to determine reduced modulus and indentation hardness. The properties of coatings on steel substrates were studied to determine coating hardness, adhesion, solvent resistance, and mechanical durability. Compared with the control, epoxidized soybean oil, the anhydride-cured ESEFAs have high modulus and are hard and ductile, high-performance thermoset materials while maintaining a high biobased content (71-77% in theory). The exceptional performance of the ESEFAs is attributed to the unique structure of these macromolecules: well-defined compact structures with high epoxide functionality. These biobased thermosets have potential uses in applications such as composites, adhesives, and coatings.  相似文献   

6.
Teeth have provided insights into many topics including primate diet, paleobiology, and evolution, due to the fact that they are largely composed of inorganic materials and may remain intact long after an animal is deceased. Previous studies have reported that the mechanical properties, chemistry, and microstructure of human enamel vary with location. This study uses nanoindentation to map out the mechanical properties of Alouatta palliata molar enamel on an axial cross‐section of an unworn permanent third molar, a worn permanent first molar, and a worn deciduous first molar. Variations were then correlated with changes in microstructure and chemistry using scanning electron microscopy and electron microprobe techniques. The hardness and Young's modulus varied with location throughout the cross‐sections from the occlusal surface to the dentin‐enamel junction (DEJ), from the buccal to lingual sides, and also from one tooth to another. These changes in mechanical properties correlated with changes in the organic content of the tooth, which was shown to increase from ~6% near the occlusal surface to ~20% just before the DEJ. Compared to human enamel, the Alouatta enamel showed similar microstructures, chemical constituents, and magnitudes of mechanical properties, but showed less variation in hardness and Young's modulus, despite the very different diet of this species. Am J Phys Anthropol 2010. © 2009 Wiley‐Liss, Inc.  相似文献   

7.
Acoustic microscopy (30-60 microm resolution) and nanoindentation (1-5 microm resolution) are techniques that can be used to evaluate the elastic properties of human bone at a microstructural level. The goals of the current study were (1) to measure and compare the Young's moduli of trabecular and cortical bone tissues from a common human donor, and (2) to compare the Young's moduli of bone tissue measured using acoustic microscopy to those measured using nanoindentation. The Young's modulus of cortical bone in the longitudinal direction was about 40% greater than (p<0.01) the Young's modulus in the transverse direction. The Young's modulus of trabecular bone tissue was slightly higher than the transverse Young's modulus of cortical bone, but substantially lower than the longitudinal Young's modulus of cortical bone. These findings were consistent for both measurement methods and suggest that elasticity of trabecular tissue is within the range of that of cortical bone tissue. The calculation of Young's modulus using nanoindentation assumes that the material is elastically isotropic. The current results, i.e., the average anisotropy ratio (E(L)/E(T)) for cortical bone determined by nanoindentation was similar to that determined by the acoustic microscope, suggest that this assumption does not limit nanoindentation as a technique for measurement of Young's modulus in anisotropic bone.  相似文献   

8.
Strontium (Sr) ralenate is a new agent used for the prevention and treatment of osteoporosis. As a bone-seeking element, 98% of Sr is deposited in the bone and teeth after oral ingestion. However, the effect of Sr treatment on bone microarchitecture and bone nanomechanical properties remains unclear. In this study, 18 osteoporotic goats were divided into four groups according to the treatment regimen: control, calcium alone (Ca), calcium and Sr at 24 mg/kg (Ca + 24Sr), and calcium and Sr at 40 mg/kg (Ca + 40Sr). The effects of Sr administration on bone microarchitecture and nanomechanical properties of trabecular bones were analyzed with micro-CT and nanoindentation test, respectively. Serum Sr levels increased six- and tenfold in the Ca + 24Sr and Ca + 40Sr groups, respectively. Similarly, Sr in the bone increased four- and sixfold in these two groups. Sr administration significantly increased trabecular bone volume fraction, trabecular thickness, and double-labeled new bone area. Sr administration, however, did not significantly change the nanomechanical properties of trabecular bone (elastic modulus and hardness). The data suggested that Sr administration increased trabecular bone volume and improved the microarchitecture while maintaining the intrinsic tissue properties in the osteoporotic goat model.  相似文献   

9.
Improved understanding of the effects of hydration and drying in mineralized tissues is highly desirable, particularly for physiologically hydrated biological materials such as dentin. We investigated the influence of hydration on the nanomechanical properties of healthy dentin and hypothesized that drying leads to an increase in indentation induced energy expenditure and hardness. Hydrated and dry dentin were tested with a UMIS set up with a Berkovich indenter at a maximum load of 50 mN. Values representative of the energy expenditure behavior were presented as dissipated energy, U(d), recovered energy, U(e), normalized energy expenditure index, ψ, and hardness, H. Energy expenditure index results, which normalize the energy expenditure for each test and describe the relative energy dissipation-recovery behavior of a material, suggested that, for the relatively severe contact strains about a sharp Berkovich indenter, dissipation dominates the mechanical response of both the hydrated and dry dentin. In support of our initial hypothesis, dry dentin presented a significantly higher energy expenditure index than hydrated dentin (p<0.0001). These results were primarily associated with a lower U(e) that was found upon drying. Hydration also decreased H significantly (p<0.0001). In summary, this study presents the first direct measurements of the energy expenditure behavior of hydrated and dry dentin using instrumented nanoindentation.  相似文献   

10.
Miscanthus x giganteus bark samples subjected to fractionation by the Acetosolv process under optimal conditions were bleached using hydrogen peroxide and acetic acid in aqueous media under alkaline conditions. The influence of the main operational variables in the bleaching of Acetosolv pulps of M. x giganteus (i.e. hydrogen peroxide concentration, 3–7%; temperature, 55–75 °C; pH 9–11), obtained after treatments, have been assessed on pulp yield, kappa number, viscosity and brightness of bleached pulps. For this purpose, a rotatable and orthogonal second-order factorial design of experiments was used, in order to identify the optimum operating conditions. The obtained empirical mathematical models demonstrate that, in general, the bleaching was efficient, achieving pulps with kappa numbers below 10. The chemical composition and physicochemical properties of the bleached pulps fulfilled the requirements for forthcoming bleaching stages. Moreover, an alkaline extraction stage to eliminate saponifiable groups of Acetosolv pulps was studied, as well as the necessity of use chelating agents in the stage with hydrogen peroxide.  相似文献   

11.
The gene for dentin sialophosphoprotein produces a single protein that is post-translationally modified to generate two distinct extracellular proteins: dentin sialoprotein and dentin phosphoprotein. In teeth, dentin sialophosphoprotein is expressed primarily by odontoblast cells, but is also transiently expressed by presecretory ameloblasts. Because of this expression profile it appears that dentin sialophosphoprotein contributes to the early events of amelogenesis, and in particular to those events that result in the formation of the dentino-enamel junction and the adjacent "aprismatic" enamel. Using a transgenic animal approach we have extended dentin sialoprotein or dentin phosphoprotein expression throughout the developmental stages of amelogenesis. Overexpression of dentin sialoprotein results in an increased rate of enamel mineralization, however, the enamel morphology is not significantly altered. In wild-type animals, the inclusion of dentin sialoprotein in the forming aprismatic enamel may account for its increased hardness properties, when compared with bulk enamel. In contrast, the overexpression of dentin phosphoprotein creates "pitted" and "chalky" enamel of non-uniform thickness that is more prone to wear. Disruptions to the prismatic enamel structure are also a characteristic of the dentin phosphoprotein overexpressing animals. These data support the previous suggestion that dentin sialoprotein and dentin phosphoprotein have distinct functions related to tooth formation, and that the dentino-enamel junction should be viewed as a unique transition zone between enamel and the underlying dentin. These results support the notion that the dentin proteins expressed by presecretory ameloblasts contribute to the unique properties of the dentino-enamel junction.  相似文献   

12.
Industrial eucalypt (E. globulus L.) kraft pulp was treated with two commercial xylanase preparations Ecopulp® TX-200A and Pulpzyme® HC (endo-1,4-β-xylanase activity; EC 3.2.1.8) and bleached by totally chlorine-free (TCF) three-stage hydrogen peroxide bleaching sequence, without oxygen pre-delignification. The effect of enzymatic stage on pulp properties and bleachability has been studied and compared with reference (control) pulps, processed without enzyme addition. The similar mode of enzymatic action was noted for both xylanase preparations. Final brightness of 86% ISO was achieved after complete bleaching. Direct bleaching effect caused pulp brightening (by 1.2–1.5% ISO) and delignification (by 7–10%) immediately after the enzymatic stage. The maximal bleach boosting was shown after the first peroxide stage and then diminished, despite the progressive increase in delignification over the control. The loss in efficiency of xylanase treatment by the end of peroxide bleaching was associated with specific behavior of xylan-derived chromophores, i.e., hexenuronic acids.  相似文献   

13.
Complete bleaching of melanin in strongly pigmented specimens embedded in paraffin or polystyrene, and sectioned and mounted on slides, is possible in 1-3 hr at 37 C in a solution of 20 ml of benzyl alcohol, 10 ml of acetone, 5 ml of 10% hydrogen peroxide and 4 drops of a 25% ammonia solution. The bleached tissues are well preserved and tolerate further histochemical treatments. All the stains and reactions tested give results identical to or better than those obtained after 24-48 hr oxidation in 10% hydrogen peroxide.  相似文献   

14.
Hyaline cartilage consists of sparse chondrocytes and abundant extracellular matrix. There is a paucity of experimental data in support of the notion of conceivable regional differences in the mechanical properties of chondral matrices. Upon visual differentiation of the pericellular and interterritorial matrices in each of 19 fresh growth plate samples with toluidine blue and alizarin red labels, nanoindentation was applied separately to the pericellular matrix and interterritorial matrix to using fluid-phase atomic force microscopy and real-time imaging. The interterritorial matrix demonstrated elongated parallel ridges, whereas the pericellular matrix showed irregular, short-range elevations with characteristic pores and canals. Analysis of surface contours at 600nm(2) scan size revealed that the interterritorial matrix had significantly greater surface roughness (71+/-18nm; mean+/-SE) than the pericellular matrix (24+/-4nm) ( P< 0.001). The average Young's modulus of the interterritorial matrix was 636+/-123 (kPa), significantly greater than the pericellular matrix (265+/-53kPa) (P< 0.001 ). Thus, the interterritorial matrix appears to possess not only distinct microtopographic contours in comparison with the pericellular matrix, but also significantly greater mechanical stiffness. These distinctive nanostructural and nanomechanical properties may have implications in nutrient diffusion and fluid dynamics, both of which are of vital importance for cartilage health and function.  相似文献   

15.
Preliminary studies on TCF bleaching of Pinus pinaster acetosolv pulps.   总被引:1,自引:0,他引:1  
Oxygen pre-treatment of Pinus pinaster acetosolv pulps has been studied as a first step towards TCF bleaching. Using a 2(3) factorial design, the influence of temperature (80-120 degrees C), time (1-2 h) and NaOH concentration (1.5-3%) on pulp yield in the oxygen stage, chemical composition and physical properties of the pulps obtained was studied. Pulps pre-bleached with oxygen in the conditions selected as optimal (80 degrees C, 1 h with 2.25% NaOH) have been bleached with TCF sequences which included stages with hydrogen peroxide or hydrogen peroxide-oxygen under pressure. Even if high degrees of delignification were reached, with a reduction in Kappa number up to 95% and without important loss of viscosity, the carbohydrates degradation, especially hemicelluloses in the acetic acid delignification, reduces the strength potential of the pulps.  相似文献   

16.
Complete bleaching of melanin in strongly pigmented specimens embedded in paraffin or polystyrene, and sectioned and mounted on slides, is possible in 1-3 hr at 37 C in a solution of 20 ml of benzyl alcohol, 10 ml of acetone, 5 ml of 10% hydrogen peroxide and 4 drops of a 25% ammonia solution. The bleached tissues are well preserved and tolerate further histochemical treatments. A11 the stains and reactions tested give results identical to or better than those obtained after 24-48 hr oxidation in 10% hydrogen peroxide.  相似文献   

17.
Primate teeth adapt to the physical properties of foods in a variety of ways including changes in occlusal morphology, enamel thickness, and overall size. We conducted a comparative study of extant primates to examine whether their teeth also adapt to foods through variation in the mechanical properties of the enamel. Nanoindentation techniques were used to map profiles of elastic modulus and hardness across tooth sections from the enamel-dentin junction to the outer enamel surface in a broad sample of primates including apes, Old World monkeys, New World monkeys, and lemurs. The measured data profiles feature considerable overlap among species, indicating a high degree of commonality in mechanical properties. These results suggest that differences in the load-bearing capacity of primate molar teeth are more a function of morphology-particularly tooth size and enamel thickness-than of underlying mechanical properties.  相似文献   

18.
A viscoelastic nanoindentation technique was developed to measure both in-plane and through-thickness viscoelastic properties of human tympanic membrane (TM). For measurement of in-plane Young's relaxation modulus, the TM sample was clamped on a circular hole and a nanoindenter tip was used to apply a concentrated force at the center of the TM sample. In this setup, the resistance to nanoindentation displacement can be considered due primarily to the in-plane stiffness. The load-displacement curve obtained was used along with finite element analysis to determine the in-plane viscoelastic properties of TM. For measurements of Young's relaxation modulus in the through-thickness (out-of-plane) direction, the TM sample was placed on a relatively rigid solid substrate and nanoindentation was made on the sample surface. In this latter setup, the resistance to nanoindentation displacement arises primarily due to out-of-plane stiffness. The load-displacement curve obtained in this manner was used to determine the out-of-plane relaxation modulus using the method appropriate for viscoelastic materials. From our sample tests, we obtained the steady-state values for in-plane moduli as approximately 17.4 MPa and approximately 19.0 MPa for posterior and anterior portions of TM samples, respectively, and the value for through-thickness modulus as approximately 6.0 MPa for both posterior and anterior TM samples. Using this technique, the local out-of-plane viscoelastic modulus can be determined for different locations over the entire TM, and the in-plane properties can be determined for different quadrants of the TM.  相似文献   

19.
The large, bunodont postcanine teeth in living sea otters (Enhydra lutris) have been likened to those of certain fossil hominins, particularly the ’robust’ australopiths (genus Paranthropus). We examine this evolutionary convergence by conducting fracture experiments on extracted molar teeth of sea otters and modern humans (Homo sapiens) to determine how load-bearing capacity relates to tooth morphology and enamel material properties. In situ optical microscopy and x-ray imaging during simulated occlusal loading reveal the nature of the fracture patterns. Explicit fracture relations are used to analyze the data and to extrapolate the results from humans to earlier hominins. It is shown that the molar teeth of sea otters have considerably thinner enamel than those of humans, making sea otter molars more susceptible to certain kinds of fractures. At the same time, the base diameter of sea otter first molars is larger, diminishing the fracture susceptibility in a compensatory manner. We also conduct nanoindentation tests to map out elastic modulus and hardness of sea otter and human molars through a section thickness, and microindentation tests to measure toughness. We find that while sea otter enamel is just as stiff elastically as human enamel, it is a little softer and tougher. The role of these material factors in the capacity of dentition to resist fracture and deformation is considered. From such comparisons, we argue that early hominin species like Paranthropus most likely consumed hard food objects with substantially higher biting forces than those exerted by modern humans.  相似文献   

20.
This paper will consider the influence of the operating conditions used in the hydrogen peroxide bleaching (concentration 1–5 % and process time 30–210 min) and sodium perborate bleaching (sodium perborate concentration 1–5 %, hydrogen peroxide 0–2% and process time 60–180 min) of olive wood trimmings pulp on the yield, kappa index and viscosity of the resulting pulp, and on strength related properties of paper sheets (stretch index and burst index) in order to determine the best bleaching conditions of this pulp. Medium to low hydrogen peroxide concentrations (1–3 %) and a high operation time (210 min) were desired in the bleaching of pulp. A high sodium perborate concentration and hydrogen peroxide concentration (5 % and 2 % respectively) and medium to low operation time (60–120 min) were desired for the sodium perborate bleaching. A comparison of both bleaching agents, under similar or under optimum operating conditions, revealed that sodium perborate bleaching results in lower brightness, a higher kappa index and also higher viscosity than hydrogen peroxide bleaching. Moreover, both provided similar stretch index and burst index values for sodium perborate bleaching with respect to hydrogen peroxide bleaching.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号