首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In neurons, Presenilin 1(PS1)/γ-secretase is located at the synapses, bound to N-cadherin. We have previously reported that N-cadherin-mediated cell–cell contact promotes cell-surface expression of PS1/γ-secretase. We postulated that N-cadherin-mediated trafficking of PS1 might impact synaptic PS1-amyloid precursor protein interactions and Aβ generation. In the present report, we evaluate the effect of N-cadherin-based contacts on Aβ production. We demonstrate that stable expression of N-cadherin in Chinese hamster ovary cells, expressing the Swedish mutant of human amyloid precursor protein leads to enhanced secretion of Aβ in the medium. Moreover, N-cadherin expression decreased Aβ42/40 ratio. The effect of N-cadherin expression on Aβ production was accompanied by the enhanced accessibility of PS1/γ-secretase to amyloid precursor protein as well as a conformational change of PS1, as demonstrated by the fluorescence lifetime imaging technique. These results indicate that N-cadherin-mediated synaptic adhesion may modulate Aβ secretion as well as the Aβ42/40 ratio via PS1/N-cadherin interactions.  相似文献   

2.
Abstract: Studies of processing of the Alzheimer β-amyloid precursor protein (βAPP) have been performed to date mostly in continuous cell lines and indicate the existence of two principal metabolic pathways: the "β-secretase" pathway, which generates β-amyloid (Aβ1–40/42; ∼4 kDa), and the "α-secretase" pathway, which generates a smaller fragment, the "p3" peptide (Aβ17–40/42; ∼3 kDa). To determine whether similar processing events underlie βAPP metabolism in neurons, media were examined following conditioning by primary neuronal cultures derived from embryonic day 17 rats. Immunoprecipitates of conditioned media derived from [35S]methionine pulse-labeled primary neuronal cultures contained 4- and 3-kDa Aβ-related species. Radiosequencing analysis revealed that the 4-kDa band corresponded to conventional Aβ beginning at position Aβ(Asp1), whereas both radio-sequencing and immunoprecipitation-mass spectrometry analyses indicated that the 3-kDa species in these conditioned media began with Aβ(Glu11) at the N terminus, rather than Aβ(Leu17) as does the conventional p3 peptide. Either activation of protein kinase C or inhibition of protein phosphatase 1/2A increased soluble βAPPα release and decreased generation of both the 4-kDa Aβ and the 3-kDa N-truncated Aβ. Unlike results obtained with continuously cultured cells, protein phosphatase 1/2A inhibitors were more potent at reducing Aβ secretion by neurons than were protein kinase C activators. These data indicate that rodent neurons generate abundant Aβ variant peptides and emphasize the role of protein phosphatases in modulating neuronal Aβ generation.  相似文献   

3.
Abstract: Amyloid β-peptides (Aβ) may alter the neuronal membrane lipid environment by changing fluidity and inducing free radical lipid peroxidation. The effects of Aβ1–40 and Aβ25–35 on the fluidity of lipids adjacent to proteins (annular fluidity), bulk lipid fluidity, and lipid peroxidation were determined in rat synaptic plasma membranes (SPM). A fluorescent method based on radiationless energy transfer from tryptophan of SPM proteins to pyrene and pyrene monomer-eximer formation was used to determine SPM annular fluidity and bulk fluidity, respectively. Lipid peroxidation was determined by the thiobarbituric acid assay. Annular fluidity and bulk fluidity of SPM were increased significantly ( p ≤ 0.02) by Aβ1–40. Similar effects on fluidity were observed for Aβ25–35 ( p ≤ 0.002). Increased fluidity was associated with lipid peroxidation. Both Aβ peptides significantly increased ( p ≤ 0.006) the amount of malondialdehyde in SPM. The addition of a water-soluble analogue of vitamin E (Trolox) inhibited effects of Aβ on lipid peroxidation and fluidity in SPM. The fluidizing action of Aβ peptides on SPM may be due to the induction of lipid peroxidation by those peptides. Aβ-induced changes in neuronal function, such as ion flux and enzyme activity, that have been reported previously may result from the combined effects of lipid peroxidation and increased membrane fluidity.  相似文献   

4.
Abstract: There is mounting evidence that at least some of the neurotoxicity associated with Alzheimer's disease (AD) is due to proteolytic fragments of the β-amyloid precursor protein (βAPP). Most research has focused on the amyloid β protein (Aβ), which has been shown to possess ion channel activity. However, the possible role of other cleaved products of the βAPP is less clear. We have investigated the ability of various products of βAPP to induce membrane ion currents by applying them to Xenopus oocytes, a model system used extensively for investigating electrophysiological aspects of cellular, including neuronal, signalling. We focussed on the 105-amino-acid C-terminal fragment (CT105) (containing the full sequence Aβ), which has previously been found to be toxic to cells, although little is known about its mode of action. We have found that CT105 is exceedingly potent, with a threshold concentration of 100–200 n M , in inducing nonselective ion currents when applied from either outside or inside the oocyte and is more effective than either βAPP or the Aβ fragments, β25–35 or β1–40. The ion channel activity of CT105 was concentration dependent and blocked by a monoclonal antibody to Aβ. These results suggest the possible involvement of CT105 in inducing the neural toxicity characteristic of AD.  相似文献   

5.
Abstract: Amyloid β protein (Aβ) deposition in the cerebral arterial and capillary walls is one of the major characteristics of brains from patients with Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Vascular Aβ deposition is accompanied by degeneration of smooth muscle cells and pericytes. In this study we found that Aβ1–40 carrying the "Dutch" mutation (HCHWA-D Aβ1–40) as well as wild-type Aβ1–42 induced degeneration of cultured human brain pericytes and human leptomeningeal smooth muscle cells, whereas wild-type Aβ1–40 and HCHWA-D Aβ1–42 were inactive. Cultured brain pericytes appeared to be much more vulnerable to Aβ-induced degeneration than leptomeningeal smooth muscle cells, because in brain pericyte cultures cell viability already decreased after 2 days of exposure to HCHWA-D Aβ1–40, whereas in leptomeningeal smooth muscle cell cultures cell death was prominent only after 4–5 days. Moreover, leptomeningeal smooth muscle cell cultures were better able to recover than brain pericyte cultures after short-term treatment with HCHWA-D Aβ1–40. Degeneration of either cell type was preceded by an increased production of cellular amyloid precursor protein. Both cell death and amyloid precursor protein production could be inhibited by the amyloid-binding dye Congo red, suggesting that fibril assembly of Aβ is crucial for initiating its destructive effects. These data imply an important role for Aβ in inducing perivascular cell pathology as observed in the cerebral vasculature of patients with Alzheimer's disease or HCHWA-D.  相似文献   

6.
Abstract: Cerebrovascular amyloid β-protein (Aβ) deposition is a key pathological feature of Alzheimer's disease and hereditary cerebral hemorrhage with amyloidosis-Dutch type (HCHWA-D). Aβ1–40 containing the E22Q HCHWA-D mutation, but not wild-type Aβ1–40, potently induces several pathologic responses in cultured human cerebrovascular smooth muscle cells, including cellular degeneration and a robust increase in the levels of cellular Aβ precursor. In the present study, we show by several quantitative criteria, including thioflavin T fluorescence binding, circular dichroism spectroscopy, and transmission electron microscopic analysis, that at a concentration of 25 µ M neither HCHWA-D Aβ1–40 nor wild-type Aβ1–40 appreciably assembles into β-pleated sheet-containing fibrils in solution over a 6-day incubation period. In contrast, at the same concentrations, HCHWA-D Aβ1–40, but not wild-type Aβ1–40, selectively binds and assembles into abundant fibrils on the surfaces of cultured human cerebrovascular smooth muscle cells. The simultaneous addition of an equimolar concentration of the dye Congo red prevents the cell surface fibril assembly of HCHWA-D Aβ1–40. Moreover, Congo red effectively blocks the key pathologic responses induced by HCHWA-D Aβ1–40 in these cells. The present findings suggest that the surface of human cerebrovascular smooth muscle cells may selectively orchestrate the assembly of pathogenic Aβ fibrils and that cell surface Aβ fibril formation plays an important role in causing the pathologic responses in these cells.  相似文献   

7.
Previous studies have described that statins (inhibitors of cholesterol and isoprenoid biosynthesis) inhibit the output of amyloid-β (Aβ) in the animal model and thus decrease risk of Alzheimer's disease. However, their action mechanism(s) in Aβ precursor protein (APP) processing and Aβ generation is not fully understood. In this study, we report that lovastatin treatment reduced Aβ output in cultured hippocampal neurons as a result of reduced APP levels and β-secretase activities in low density Lubrol WX (non-ionic detergent) extractable lipid rafts (LDLR). Rather than altering cholesterol levels in lipid raft fractions and thus disrupting lipid raft structure, lovastatin decreased Aβ generation through down-regulating geranylgeranyl-pyrophosphate dependent endocytosis pathway. The inhibition of APP endocytosis by treatment with lovastatin and reduction of APP levels in LDLR fractions by treatment with phenylarsine oxide (a general endocytosis inhibitor) support the involvement of APP endocytosis in APP distribution in LDLR fractions and subsequent APP β-cleavage. Moreover, lovastatin-mediated down-regulation of endocytosis regulators, such as early endosomal antigen 1, dynamin-1, and phosphatidylinositol 3-kinase activity, indicates that lovastatin modulates APP endocytosis possibly through its pleiotropic effects on endocytic regulators. Collectively, these data report that lovastatin mediates inhibition of LDLR distribution and β-cleavage of APP in a geranylgeranyl-pyrophosphate and endocytosis-dependent manner.  相似文献   

8.
Alzheimer's disease (AD) is hypothesized to result from elevated brain levels of β-amyloid peptide (Aβ) which is the main component of plaques found in AD brains and which cause memory impairment in mice. Therefore, there has been a major focus on the development of inhibitors of the Aβ producing enzymes γ-secretase and β-site amyloid precursor protein-cleaving enzyme 1 (BACE1). In this study, we investigated the Aβ-lowering effects of the BACE1 inhibitor LY2434074 in vitro and in vivo , comparing it to the well characterized γ-secretase inhibitor LY450139. We sampled interstitial fluid Aβ from awake APPswe/PS1dE9 AD mice by in vivo Aβ microdialysis. In addition, we measured levels of endogenous brain Aβ extracted from wildtype C57BL/6 mice. In our in vitro assays both compounds showed similar Aβ-lowering effects. However, while systemic administration of LY450139 resulted in transient reduction of Aβ in both in vivo models, we were unable to show any Aβ-lowering effect by systemic administration of the BACE1 inhibitor LY2434074 despite brain exposure exceeding the in vitro IC50 value several fold. In contrast, significant reduction of 40–50% of interstitial fluid Aβ and wildtype cortical Aβ was observed when infusing LY2434074 directly into the brain by means of reverse microdialysis or by dosing the BACE1 inhibitor to p-glycoprotein (p-gp) mutant mice. The effects seen in p-gp mutant mice and subsequent data from our cell-based p-gp transport assay suggested that LY2434074 is a p-gp substrate. This may partly explain why BACE1 inhibition by LY2434074 has lower in vivo efficacy, with respect to decreased Aβ40 levels, compared with γ-secretase inhibition by LY450139.  相似文献   

9.
β-amyloid peptide 1–42 (Aβ1–42) and hyperphosphorylated tau are associated with neurodegeneration in Alzheimer's disease. Emerging evidence indicates that Aβ1–42 can potentiate hyperphosphorylation of tau in cell lines and in transgenic mice, but the underlying mechanism(s) remains unclear. In this study, Aβ1–42-induced tau phosphorylation was investigated in differentiated PC12 cells. Treatment of cells with Aβ1–42 increased phosphorylation of tau at serine-202 as detected by AT8 antibody. This Aβ1–42-induced tau phosphorylation paralleled phosphorylation of glycogen synthase kinase-3β (GSK-3β) at tyrosine-216 (GSK-3β-pY216), which was partially inhibited by the GSK-3β inhibitor, CHIR98023. Aβ1–42-induced tau phosphorylation and increase in GSK-3β-pY216 phosphorylation were also partially attenuated by α7 nicotinic acetylcholine receptor (α7 nAChR) selective ligands including agonist A-582941 and antagonists methyllycaconitine and α-bungarotoxin. The α7 nAChR agonist and the GSK-3β inhibitor had no additive effect. These observations suggest that α7 nAChR modulation can influence Aβ1–42-induced tau phosphorylation, possibly involving GSK-3β. This study provides evidence of nAChR mechanisms underlying Aβ1–42 toxicity and tau phosphorylation, which, if translated in vivo , could provide additional basis for the utility of α7 nAChR ligands in the treatment of Alzheimer's disease.  相似文献   

10.
Aggregation of amyloid-β (Aβ) peptides is a central phenomenon in Alzheimer's disease. Zn(II) and Cu(II) have profound effects on Aβ aggregation; however, their impact on amyloidogenesis is unclear. Here we show that Zn(II) and Cu(II) inhibit Aβ42 fibrillization and initiate formation of non-fibrillar Aβ42 aggregates, and that the inhibitory effect of Zn(II) (IC50 = 1.8 μmol/L) is three times stronger than that of Cu(II). Medium and high-affinity metal chelators including metallothioneins prevented metal-induced Aβ42 aggregation. Moreover, their addition to preformed aggregates initiated fast Aβ42 fibrillization. Upon prolonged incubation the metal-induced aggregates also transformed spontaneously into fibrils, that appear to represent the most stable state of Aβ42. H13A and H14A mutations in Aβ42 reduced the inhibitory effect of metal ions, whereas an H6A mutation had no significant impact. We suggest that metal binding by H13 and H14 prevents the formation of a cross-β core structure within region 10–23 of the amyloid fibril. Cu(II)-Aβ42 aggregates were neurotoxic to neurons in vitro only in the presence of ascorbate, whereas monomers and Zn(II)-Aβ42 aggregates were non-toxic. Disturbed metal homeostasis in the vicinity of zinc-enriched neurons might pre-dispose formation of metal-induced Aβ aggregates, subsequent fibrillization of which can lead to amyloid formation. The molecular background underlying metal-chelating therapies for Alzheimer's disease is discussed in this light.  相似文献   

11.
The mechanism of the effect of docosahexaenoic acid (DHA; C22:6, n -3), one of the essential brain nutrients, on in vitro fibrillation of amyloid β (Aβ1–42), Aβ1–42-oligomers and its toxicity imparted to SH-S5Y5 cells was studied with the use of thioflavin T fluorospectroscopy, laser confocal microfluorescence, and transmission electron microscopy. The results clearly indicated that DHA inhibited Aβ1–42-fibrill formation with a concomitant reduction in the levels of soluble Aβ1–42 oligomers. The polymerization (into fibrils) of preformed oligomers treated with DHA was inhibited, indicating that DHA not only obstructs their formation but also inhibits their transformation into fibrils. Sodium dodecyl sulfate–polyacrylamide gel electrophoresis (12.5%), Tris–Tricine gradient(4–20%) gel electrophoresis and western blot analyses revealed that DHA inhibited at least 2 species of Aβ1–42 oligomers of 15–20 kDa, indicating that it hinders these on-pathway tri/tetrameric intermediates during fibrillation. DHA also reduced the levels of dityrosine and tyrosine intrinsic fluorescence intensity, indicating DHA interrupts the microenvironment of tyrosine in the Aβ1–42 backbone. Furthermore, DHA protected the tyrosine from acrylamide collisional quenching, as indicated by decreases in Stern–Volmer constants. 3-[4,5-Dimethylthiazol-2-yl]-2,5-diphenyltetrazolium bromide-reduction efficiency and immunohistochemical examination suggested that DHA inhibits Aβ1–42-induced toxicity in SH-S5Y5 cells. Taken together, these data suggest that by restraining Aβ1–42 toxic tri/tetrameric oligomers, DHA may limit amyloidogenic neurodegenerative diseases, Alzheimer's disease.  相似文献   

12.
Abstract: The pentameric subunit composition of a large population (36%) of the cerebellar granule cell GABAA receptors that show diazepam (or clonazepam)-insensitive [3H]Ro 15-4513 binding has been determined by immunoprecipitation with subunit-specific antibodies. These receptors have α6, α1, γ2S, γ2L, and β2 or β3 subunits colocalizing in the same receptor complex.  相似文献   

13.
Abstract: The frequency of the ε4 allele of apolipoprotein E(apoE) is increased in late-onset and sporadic forms of Alzheimer's disease (AD). ApoE also binds to β-amyloid (Aβ) and both proteins are found in AD plaques. To further investigate the potential interaction of apoE and Aβ in the pathogenesis of AD, we have determined the binding, internalization, and degradation of human apoE isoforms in the presence and absence of Aβ peptides to rat primary hippocampal neurons. We demonstrate that the lipophilic Aβ peptides, in particular Aβ1–42, Aβ1–40, and Aβ25–35, increase significantly apoE-liposome binding to hippocampal neurons. For each Aβ peptide, the increase was significantly greater for the apoE4 isoform than for the apoE3 isoform. The most effective of the Aβ peptides to increase apoE binding, Aβ25–35, was further shown to increase significantly the internalization of both apoE3- and apoE4-liposomes, without affecting apoE degradation. Conversely, Aβ1–40 uptake by hippocampal neurons was shown to be increased in the presence of apoE-liposomes, more so in the presence of the apoE4 than the apoE3 isoform. These results provide evidence that Aβ peptides interact directly with apoE lipoproteins, which may then be transported together into neuronal cells through apoE receptors.  相似文献   

14.
Pharmacological modulation of the GABAA receptor has gained increasing attention as a potential treatment for central processes affected in Alzheimer disease (AD), including neuronal survival and cognition. The proteolytic cleavage of the amyloid precursor protein (APP) through the α-secretase pathway decreases in AD, concurrent with cognitive impairment. This APP cleavage occurs within the β-amyloid peptide (Aβ) sequence, precluding formation of amyloidogenic peptides and leading to the release of the soluble N-terminal APP fragment (sAPPα) which is neurotrophic and procognitive. In this study, we show that at nanomolar-low micromolar concentrations, etazolate, a selective GABAA receptor modulator, stimulates sAPPα production in rat cortical neurons and in guinea pig brains. Etazolate (20 nM–2 μM) dose-dependently protected rat cortical neurons against Aβ-induced toxicity. The neuroprotective effects of etazolate were fully blocked by GABAA receptor antagonists indicating that this neuroprotection was due to GABAA receptor signalling. Baclofen, a GABAB receptor agonist failed to inhibit the Aβ-induced neuronal death. Furthermore, both pharmacological α-secretase pathway inhibition and sAPPα immunoneutralization approaches prevented etazolate neuroprotection against Aβ, indicating that etazolate exerts its neuroprotective effect via sAPPα induction. Our findings therefore indicate a relationship between GABAA receptor signalling, the α-secretase pathway and neuroprotection, documenting a new therapeutic approach for AD treatment.  相似文献   

15.
We have shown previously that β-catenin and cyclin D1 are up-regulated in cortical neurons from homozygous mice carrying the familial Alzheimer's disease (FAD) presenilin-1 M146V mutation in a knock-in model (PS1 KIM146V mice), leading to cell cycle-associated apoptosis. Here, we have aimed to determine (i) whether this phenotype is present in heterozygous PS1 KIM146V mice, which reflects more accurately the PS1 FAD condition in humans and (ii) whether Aβ1–42, which is invariably present in the PS1 FAD brain and is thought to affect neuronal cell cycle kinetics, may contribute to the abnormal cell cycle/cell death phenotype seen in PS1 KIM146V mice. We demonstrate that cell cycle-linked apoptosis occurs in heterozygous PS1 KIM146V post-mitotic neurons. In addition, there is a significant Aβ-associated increase in cell cycle and cell death that is not further modified by the PS1 KIM146V mutation. Our results are consistent with a cell cycle-associated neurodegeneration model in the PS1 FAD brain in which the loss of PS1-dependent β-catenin regulatory function is sufficient to commit susceptible neurons to an abortive cell cycle, and may act synergistically with the Aβ cytotoxic challenge present in the PS1 FAD brain to expand the neuronal population susceptible to cell cycle-driven apoptosis.  相似文献   

16.
Abstract: Mutations in the presenilin genes PS1 and PS2 cause the most common form of early-onset familial Alzheimer's disease. The influence of PS1 mutations on the generation of endogenous intracellular amyloid β-protein (Aβ) species was assessed using a highly sensitive immunoblotting technique with inducible mouse neuro-blastoma (Neuro 2a) cell lines expressing the human wild-type (wt) or mutated PS1 (M146L or Δexon 10). The induction of mutated PS1 increased the intracellular levels of two distinct Aβ species ending at residue 42 that were likely to be Aβ1–42 and its N-terminally truncated variant(s) Aβx-42. The induction of mutated PS1 resulted in a higher level of intracellular Aβ1–42 than of intracellular Aβx-42, whereas extracellular levels of Aβ1–42 and Aβx-42 were increased proportionally. In addition, the intracellular generation of these Aβ42 species in wt and mutated PS1 -induced cells was completely blocked by brefeldin A, whereas it exhibited differential sensitivities to monensin: the increased accumulation of intracellular Aβx-42 versus inhibition of intracellular Aβ1–42 generation. These data strongly suggest that Aβx-42 is generated in a proximal Golgi, whereas Aβ1–42 is generated in a distal Golgi and/or a post-Golgi compartment. Thus, it appears that PS1 mutations enhance the degree of 42-specific γ-secretase cleavage that occurs in the normal β-amyloid precursor protein processing pathway (a) in the endoplasmic reticulum or the early Golgi apparatus prior to β-secretase cleavage or (b) in the distinct sites where Aβx-42 and Aβ1–42 are generated.  相似文献   

17.
Abstract : In this study we have used the presynaptic-rich rat cerebrocortical synaptosomal preparation to investigate the proteolytic cleavage of the amyloid precursor protein (AβPP) by the α-secretase pathway within the βA4 domain to generate a soluble secreted N-terminal fragment (AβPPs). AβPP was detected in crude cortical synaptosomal membranes, although at a lower density than that observed in whole-tissue homogenates. Protein kinase C (PKC) activation induced a translocation of the conventional PKC isoform β1 and novel PKCε from cytosol to membrane fractions, but there was no alteration in the proportion of AβPP associated with the Tritonsoluble and -insoluble fractions. AβPPs was constitutively secreted from cortical synaptosomes, with this secretion being enhanced significantly by the direct activation of PKC with phorbol ester. The PKC-induced secretion of AβPPs was only partially blocked by the PKC inhibitor GF109203X (2.5 μ M ), whereas the phosphorylation of the myristoylated alanine-rich C kinase substrate (MARCKS) protein was significantly inhibited by GF109203X. The differential sensitivities of the MARCKS phosphorylation and AβPPs secretion to GF109203X may imply that different PKC isoforms are involved in these two events in the synaptosomal system. These findings strongly suggest that the α-secretase activity leading to the secretion of AβPPs can occur at the level of the presynaptic terminal.  相似文献   

18.
19.
It has been suggested that cholesterol may modulate amyloid-β (Aβ) formation, a causative factor of Alzheimer’s disease (AD), by regulating distribution of the three key proteins in the pathogenesis of AD (β-amyloid precursor protein (APP), β-secretase (BACE1) and/or presenilin 1 (PS1)) within lipid rafts. In this work we tested whether cholesterol accumulation upon NPC1 dysfunction, which causes Niemann Pick type C disease (NPC), causes increased partitioning of APP into lipid rafts leading to increased CTF/Aβ formation in these cholesterol-rich membrane microdomains. To test this we used CHO NPC1−/− cells (NPC cells) and parental CHOwt cells. By sucrose density gradient centrifugation we observed a shift in fl-APP/CTF compartmentalization into lipid raft fractions upon cholesterol accumulation in NPC vs. wt cells. Furthermore, γ-secretase inhibitor treatment significantly increased fl-APP/CTF distribution in raft fractions in NPC vs. wt cells, suggesting that upon cholesterol accumulation in NPC1-null cells increased formation of APP-CTF and its increased processing towards Aβ occurs in lipid rafts. Our results support that cholesterol overload, such as in NPC disease, leads to increased partitioning of APP/CTF into lipid rafts resulting in increased amyloidogenic processing of APP in these cholesterol-rich membranes. This work adds to the mechanism of the cholesterol-effect on APP processing and the pathogenesis of Alzheimer’s disease and supports the role of lipid rafts in these processes.  相似文献   

20.
Abstract: Using receptors expressed from mouse brain mRNA in Xenopus oocytes, we found that enhancement of type A γ-aminobutyric acid (GABAA) receptor-gated Cl channel response is a common action of structurally diverse anesthetics, suggesting that the GABAA receptor plays an important role in anesthesia. To determine if GABAA receptor subunit composition influences actions of anesthetics, we expressed subunit cRNAs in Xenopus oocytes and measured effects of enflurane on GABA-activated Cl currents. Potentiation of GABA-activated currents by enflurane was dependent on the composition of GABAA receptor protein subunits; the order of sensitivity was α1β1 > α1β1γ2s1β1γ2L > total mRNA. The results suggest that anesthetics with simple structures may act on the GABAA receptor protein complex to modulate the Cl channel activity and provide a molecular explanation for the synergistic clinical interactions between benzodiazepines and general anesthetics.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号