首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Iron(II)-dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)-dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and -25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)-dtcs and iron(II)-mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)-dtcs and -mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6-3.2) x 10(4) and (0.7-1.1) x 10(5) M(-1) s(-1), respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)-dtcs and iron(II)-mgd by hydrogen peroxide is significantly slower (ca. 10-15 M(-1) s(-1)). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)-dtcs and iron(III)-mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M(-1) s(-1), respectively.  相似文献   

2.
Iron(II)-dithiocarbamate complexes are used to trap nitrogen monoxide in biological samples, and the resulting nitrosyliron(II)-dithiocarbamate is detected and quantified by ESR. As the chemical properties of these compounds have been little studied, we investigated whether iron dithiocarbamate complexes can redox cycle. The electrode potentials of iron complexes of N-(dithiocarboxy)sarcosine (dtcs) and N-methyl-d-glucamine dithiocarbamate (mgd) are 56 and -25 mV at pH 7.4, respectively, as measured by cyclic voltammetry. The autoxidation and Fenton reaction of iron(II)-dtcs and iron(II)-mgd were studied by stopped-flow spectrophotometry with both iron(II) complexes and dioxygen or hydrogen peroxide in excess. In the case of excess iron(II)-dtcs and -mgd complexes, the rate constants of the autoxidation and the Fenton reaction are (1.6-3.2) x 10(4) and (0.7-1.1) x 10(5) M(-1) s(-1), respectively. In the presence of nitrogen monoxide, the oxidation of iron(II)-dtcs and iron(II)-mgd by hydrogen peroxide is significantly slower (ca. 10-15 M(-1) s(-1)). The physiological reductants ascorbate, cysteine, and glutathione efficiently reduce iron(III)-dtcs and iron(III)-mgd. Therefore, iron bound to dtcs and mgd can redox cycle between iron(II) and iron(III). The ligands dtcs and mgd are slowly oxidized by hydrogen peroxide with rate constants of 5.0 and 3.8 M(-1) s(-1), respectively.  相似文献   

3.
Stereoselective inhibition of human placental aromatase   总被引:1,自引:0,他引:1  
We have synthesized the (19R)- and (19S)-isomers (2 and 3 respectively) of 10 beta-oxiranylestr-4-ene-3,17-dione. The configurations and conformations of these compounds were established by X-ray crystallographic analysis. Each of these compounds is a powerful competitive inhibitor of human placental microsomal aromatase, and stereoselectivity of inhibition was observed (Ki values for 2 and 3 were 7 and 75 nanomolar, respectively). Spectroscopic studies with purified aromatase indicate that the inhibition process involves reversible binding of oxirane oxygen to the heme iron of the enzyme. The (19R)- and (19S)-10 beta-thiiranes (6 and 7) corresponding to 2 and 3 have been synthesized from the oxiranes by a stereospecific process. The thiiranes are very effective competitive inhibitors of placental aromatase, and show even greater stereoselectivity in binding than the oxiranes (Ki values for 6 and 7 were 1 and 75 nanomolar, respectively). Spectroscopic studies with purified aromatase indicate that the inhibition process involves reversible binding of thiirane sulfur to heme iron.  相似文献   

4.
N-substituted dehydroalanines react with and scavenge oxygen radicals. One of those compounds, the para-methoxyphenylacetyl dehydroalanine derivative, indexed as AD-5, inhibits the reduction of ferricytochrome c by superoxide anion (O2-.). It can also inhibit the oxidation of linolenic acid, another chemical process, which is mediated by hydroxyl radical (HO.). Furthermore, microsomal lipid peroxidation induced by iron salts was also inhibited by AD 5, but with a different degree of efficacy. In fact, lipid peroxidation initiated by a ferrous-oxygen complex (as in iron/NADPH-dependent peroxidation) was inhibited by AD 5 in a range of concentration of 2-4 mM. On the contrary, iron/NADPH-independent lipid peroxidation, where alkoxy radicals (RO.) have principally been involved, was inhibited in a range of concentration of 6-10 mM. The ESR studies by using the spin trapping agent DMPO, show that AD-5 reacts with HO. with a second order constant of 2.8 X 10(9)-4.5 X 10(9) M-1 s-1.  相似文献   

5.
The aerotolerance of the microaerophilic bacterium Spirillum volutans was greatly stimulated in a defined medium by the presence of dihydroxyphenyl ferric iron-binding compounds such as nor-epinephrine at 10(-5) to 10(-6) M. Dihydroxyphenyl compounds at 2 X 10(-4) M, or iron salts (ferrous or ferric) at high concentration, greatly increased the aerotolerance of a strain of Campylobacter fetus subsp. jejuni when grown on streak plates of Brucella agar. The results suggest that the microaerophilism of these organisms might in part be caused by a failure to synthesize microbial ferric iron-binding compounds at sufficient levels to support aerobic growth.  相似文献   

6.
A cell culture system has been used for screening iron chelating compounds for therapeutic use in patients with iron overload. Two conjugates of 2, 3 - dihydroxybenzoic acid (2, 3 - DHB) with spermidine are more effective than desferrioxamine in removing iron from cells and, in addition, are capable of removing iron from transferrin.  相似文献   

7.
The bacterial fish pathogen Vibrio anguillarum serotype O2 strain RV22 produces the mono catecholate siderophore Vanchrobactin (Vb) under conditions of iron deficiency. Vb contains two potential bidentate coordination sites: catecholate and salicylate groups. The iron(III) coordination properties of Vb is investigated in aqueous solutions using spectrophotometric and potentiometric methods. The stepwise equilibrium constants (log?K) for successive addition of Vb dianion to a ferric ion are 19.9; 13.3, and 9.5, respectively, for an overall association constant of 42.7. Based on the previous results, we estimated the equilibrium concentration of free iron(III) under physiological conditions for pH 7.4 solution containing 10(-6) M total iron and 10(-5) M total Vb as pFe = 20 (=-log[Fe(3+)]). The Vb model compounds catechol (Cat) and 2,4-dihydroxy-N-(2-hydroxyethyl)benzamide (Dhb) have also been examined, and the obtained results show that the interaction of the whole system of Vb that contains the ferric-chelating groups of both Dhb and Cat, is synergically greater than the separate parts; i.e. Vb is the best chelating agent either in acid or basic media. In summary, bacteria employing Vb-mediated iron transport thus are able to compete effectively for iron with other microorganisms within which they live.  相似文献   

8.
An air-membrane surface (AMS) bioreactor was designed to allow bacteria to grow attached to a surface as a biofilm in contact with air. When Bacillus licheniformis strain EI-34-6, isolated from the surface of a marine alga, was grown in this reactor, cells produced antimicrobial compounds which they did not produce when they were grown in shake flask cultures. An unidentified red pigment was also produced by surface-grown cells but not by planktonically grown cells. Glycerol and ferric iron were important for the production of antimicrobial compounds and the red pigment. Release of these secondary metabolites was not due to the onset of sporulation. Cell-free spent medium recovered from beneath the reactor membrane could induce production of antimicrobial compounds and red pigment in shake flask cultures. Neither glycerol nor ferric iron was required for production of these inducer compounds. Spent medium from beneath the membrane of an AMS bioreactor culture of Bacillus subtilis strain DSM10(T) and Bacillus pumilus strain EI-25-8 could also induce production of antimicrobial compounds and a red pigment in B. licheniformis isolate EI-34-6 grown in shake flask cultures; however, the corresponding spent medium from shake flask cultures of DSM10(T) and EI-25-8 could not. These results suggest that there is a biofilm-specific cross-species signaling system which can induce planktonically grown cells to behave as if they were in a biofilm by regulating the expression of pigments and antimicrobial compounds.  相似文献   

9.
The first experimental evidence of a tight binding iron(II)-CDO complex is presented. These data enabled the relationship between iron bound and activity to be explicitly proven. Cysteine dioxygenase (CDO) from Rattus norvegicus has been expressed and purified with ~0.17 Fe/polypeptide chain. Following addition of exogenous iron, iron determination using the ferrozine assay supported a very tight stoichiometric binding of iron with an extremely slow rate of dissociation, k(off) ~ 1.7 × 10(-6) s(-1). Dioxygenase activity was directly proportional to the concentration of iron. A rate of cysteine binding to iron(III)-CDO was also measured. M?ssbauer spectra show that in its resting state CDO binds the iron as high-spin iron(II). This iron(II) active site binds cysteine with a dissociation constant of ~10 mM but is also able to bind homocysteine, which has previously been shown to inhibit the enzyme.  相似文献   

10.
Lactoferrin (LF) has been recently proposed as a physiologic regulator of the granulocyte monocyte progenitor (CFU-GM). This glycoprotein, when saturated with iron, has been said to limit CFU-GM growth by decreasing production and release of colony stimulating activity (CSA) by monocytes and macrophages. Human milk LF saturated with iron, at concentrations ranging from 10(-18) to 10(-8) M was added either to endogenously stimulated bone marrow cells or to mononucleated cells used as feeder layers for adherent cell-depleted marrow. Irrespective of the concentration of LF within the culture system used, no significant inhibition of CFU-GM growth was observed. Moreover, the CFU-GM stimulating activity of medium conditioned by a 4-day incubation of 1 X 10(6) mononucleated blood cells in the presence or in the absence of LF was the same. Various possible explanations for not confirming the reported inhibiting activity of iron saturated LF were explored: 1) masking inhibition of the system by prostaglandin E2 (PGE2), 2) masking inhibition of the system by bovine LF still detectable in the fetal calf serum after heating, 3) preinhibition of the system by leukemic-associated inhibitory activity (LIA) possibly present in the culture system, 4) the iron and calcium content of the culture medium used, 5) the fixation of LF to plastic compounds, 6) the source of the human LF used, 7) the marrow cell separation methods used. None of these factors was shown to play a role in vitro in the activity of LF and thus no evidence was found for a significant role of LF in the regulation of CSA production by monocytes. Peripheral blood human monocytes isolated by elutriation and incubated in albumin free medium in the presence of either 125I-LF or colloidal gold-labeled LF showed no LF binding.  相似文献   

11.
The effectiveness of iron compounds on growth inhibition of Sphaerotilus species was compared. In this study, two strains of Sphaerotilus were tested with different iron concentrations in a synthetic sewage (S-medium) as formulated by Lackey and Wattie (Sewage Works J. 12:669-684, 1940). For both strains, >80% inhibition of the maximum respiration rate was obtained by the following levels of soluble iron concentrations at pH 6.0: iron citrate, 20 mg/liter as Fe; iron cysteine, 5 mg/liter as Fe; and ferrous sulfate, 10 mg/liter as Fe. At a pH of 6.7 with iron citrate (20 mg/liter as Fe), inhibition of both strains was in excess of 50%. Insoluble iron compounds, such as iron hydroxides and ferrous carbonate, were found to be much less effective than the soluble iron compounds as inhibitors of these two strains. Aged iron hydroxide (500 mg/liter as Fe) produced a 70% inhibition in the maximum respiration rate while fresh iron hydroxide (52 mg/liter as Fe) and ferrous carbonate (500 mg/liter as Fe) produced a 20% inhibition. Chemical analyses of the iron-inhibited Sphaerotilus strains showed a close relationship between the inhibition of the organism's growth and the amount of iron sorbed by the organism.  相似文献   

12.
(-)-Epigallocatechin-gallate ((-)-EGCg) and (-)-epicatechin-gallate ((-)-ECG) are important antioxidants which are found in green tea. The kinetics and mechanisms of the reactions of a pseudo-first order excess of iron(III) with EGCg and ECG have been investigated in aqueous solution at 25 degrees C and an ionic strength of 0.5M NaClO(4). Mechanisms have been proposed which account satisfactorily for the kinetic data. These are consistent with a mechanism in which the 2:1 metal:ligand complex initially formed on reaction of iron(III) with the ligand subsequently decomposes in an electron transfer step. Complex formation takes place at two separate binding sites via coupled reactions. Rate constants of 4.28(+/-0.06) x 10(6) M(-2) s(-1) and 2.83(+/-0.04) x 10(6) M(-2) s(-1) have been evaluated for the reaction of monohydroxy Fe(OH)2+ species with EGCg and ECG, respectively while rate constants for of 2.94(+/-0.4) x 10(4) M(-2) s(-1) and 2.41(+/-0.25) x 10(4) M(-2) s(-1) have been evaluated for the reaction of Fe3+ species with EGCg and ECG, respectively. The iron(III) assisted decomposition of the initial iron(III) complex formed was also investigated and the rate constants evaluated. Both the complex formation and subsequent electron transfer reactions of iron(III) with EGCg and ECG were monitored using UV-visible spectrophotometry. All of the suggested mechanisms and calculated rate constants are supported by calculations carried out using global analysis of time dependant spectra. The results obtained show that one molecule of either EGCg or EGC is capable of reducing up to four iron(III) species, a fact which is consistent with the powerful antioxidant properties of the ligands.  相似文献   

13.
Zha S  Xu X  Hu H 《FEMS microbiology letters》2012,334(2):135-142
A Nostoc sp. PCC 7120 iron bioreporter containing iron-regulated schizokinen transporter gene alr0397 promoter fused to the luxAB genes was examined to optimize its response to bioavailable iron. Dose-response relationships between luciferase activity and free ferric ion (Fe(3+) ) concentrations pFe (-lg [Fe(3+) ]) were generated by measuring luciferase activities of the bioreporter in trace metal-buffered Fraquil medium with various incubation times. The results were best demonstrated by sigmoidal curves (pFe 18.8-21.7, Fe(3+) =?10(-18.8) -10(-21.7) M) with the linear range extending from pFe 19.6-21.5 (Fe(3+) =?10(-19.6) -10(-21.5) M) after a 12-h incubation time. Optimal conditions for the use of this bioreporter to sense the iron bioavailability were determined to be: a 12-h exposure time, initial cell density of OD(730?nm) =?0.06, high nitrate (100?μM), high phosphate (10?μM), moderate Co(2+) (0.1-22.5?nM), Zn(2+) (0.16-12?nM), Cu(2+) (0.04-50?nM), and wide range of Mn(2+) concentration (0.92-2300?nM). The applicability of using this iron bioreporter to assess iron availability in the natural environment has been tested using water samples from eutrophic Taihu, Donghu, and Chaohu lakes. It is indicated that the bioreporter is a useful tool to assess bioavailable iron in various water quality samples, especially in eutrophic lakes with high bioavailable iron.  相似文献   

14.
A series of iron chelating agents including the bacterial siderophores, parabactin and bis-N1,N8(2,3 dihydroxybenzoyl )spermidine, and four related compounds were synthesized and tested biologically. They were found: (a) to inhibit growth of cultured L1210 leukemia cells at IC50 values of 2-14 microM, (b) to inhibit replication of the DNA virus, herpes simplex type I, in monkey kidney cells at IC50 values of 0.4 microM ( parabactin ) to 55 microM, and (c) to be inactive against the RNA virus, vesicular stomatitis, at concentrations up to 1 mM. All effects were fully preventable by exogenous Fe (III). The activities correlated generally with the iron formation constants (10(36) to 10(48) moles/1) and more specifically with the lipophilicity of the compounds. The data suggest inhibition of DNA (but not RNA) synthesis by interference with the iron-containing enzyme, ribonucleotide reductase.  相似文献   

15.
In combination with transition metals (Mn(II), Cu(II), and Fe(III)), isoniazid and related hydrazine compounds induced unscheduled DNA synthesis (DNA repair) in cultured human fibroblasts. Manganese at 10(-5) and 10(-4) M strongly enhanced DNA repair induced by isoniazid, iproniazid, nialamide and hydrazine. Peak levels of DNA repair occurred at 5 x 10(-4)--10(-3) M of the 4 hydrazine compounds. Copper caused less enhancement of DNA repair while iron had no detectable effect. Without added metal, unscheduled DNA synthesis was not observed in cells treated with any of the 4 freshly-prepared hydrazine compounds. However, following preincubation in medium for 6--12 h, isoniazid alone at high concentrations (10(-2) M--10(-1) M) induced DNA repair. With isoniazid/manganese mixtures, preincubation did not further enhance DNA repair except at low concentrations of isoniazid (2--5 x 10(-4) M). Catalase reduced the DNA damage caused by preincubated isoniazid and by the isoniazid/metal mixtures. Exposure of repair-deficient xeroderma pigmentosum cells to isoniazid plus manganese resulted in a DNA-repair profile similar to that of normal cells. The results are consistent with hydrogen peroxide being a critical intermediate for the production of free radicals which cause the observed DNA damage.  相似文献   

16.
A modified cellular ELISA (enzyme-linked immunosorbent assay), named cellular magnetic-linked immunosorbent assay (C-MALISA), has been developed as an application of magnetic resonance imaging (MRI) for in vitro clinical diagnosis. To validate the method, three contrast agents targeted to integrins were synthesized by grafting to USPIO (ultrasmall particles of iron oxide): (a) the CS1 (connecting segment-1) fragment of fibronectin (FN) (USPIO-g-FN); (b) the peptide GRGD (USPIO-g-GRGD); (c) a non-peptidic RGD mimetic (USPIO-g-mimRGD). Jurkat cells and rat mononuclear cells were stimulated to activate their integrins. After cell fixation on ELISA plates, incubation with the contrast agents, rinsing, and digestion in 5N HCl, the samples were analyzed by MRI. Paramagnetic relaxation rate enhancements (delta R2) were measured on images. Delta R2 was converted in values of iron concentration based on a calibration curve. The apparent dissociation constants (K(d)*) of the three contrast agents were estimated based on the MRI measurement of delta R2. K(d)* of 1.22 x 10(-7) M, of 7.00 x 10(-8) M, and of 1.13 x 10(-8) M were found respectively for USPIO-g-FN, USPIO-g-GRGD, and USPIO-g-mimGRG. The MRI confirmed a statistically significant difference (p < 0.01, p < 0.05) between the stimulated cells incubated with integrin-targeted compounds with respect to the controls (i.e., non-stimulated cells and stimulated cells incubated with non-specific USPIO). The integrin specificity of the three compounds was confirmed by the pre-incubation with GRGD (for USPIO-g-mimRGD and USPIO-g-GRGD) or FN (for USPIO-g-FN).  相似文献   

17.
An air-membrane surface (AMS) bioreactor was designed to allow bacteria to grow attached to a surface as a biofilm in contact with air. When Bacillus licheniformis strain EI-34-6, isolated from the surface of a marine alga, was grown in this reactor, cells produced antimicrobial compounds which they did not produce when they were grown in shake flask cultures. An unidentified red pigment was also produced by surface-grown cells but not by planktonically grown cells. Glycerol and ferric iron were important for the production of antimicrobial compounds and the red pigment. Release of these secondary metabolites was not due to the onset of sporulation. Cell-free spent medium recovered from beneath the reactor membrane could induce production of antimicrobial compounds and red pigment in shake flask cultures. Neither glycerol nor ferric iron was required for production of these inducer compounds. Spent medium from beneath the membrane of an AMS bioreactor culture of Bacillus subtilis strain DSM10T and Bacillus pumilus strain EI-25-8 could also induce production of antimicrobial compounds and a red pigment in B. licheniformis isolate EI-34-6 grown in shake flask cultures; however, the corresponding spent medium from shake flask cultures of DSM10T and EI-25-8 could not. These results suggest that there is a biofilm-specific cross-species signaling system which can induce planktonically grown cells to behave as if they were in a biofilm by regulating the expression of pigments and antimicrobial compounds.  相似文献   

18.
Two current technologies used in biosensor development are very promising: 1. The sol-gel process of making microporous glass at room temperature, and 2. Using a fluorescent compound that undergoes fluorescence quenching in response to a specific analyte. These technologies have been combined to produce an iron biosensor. To optimize the iron (II or III) specificity of an iron biosensor, pyoverdin (a fluorescent siderophore produced by Pseudomonas spp.) was immobilized in 3 formulations of porous sol-gel glass. The formulations, A, B, and C, varied in the amount of water added, resulting in respective R values (molar ratio of water:silicon) of 5.6, 8.2, and 10.8. Pyoverdin-doped sol-gel pellets were placed in a flow cell in a fluorometer and the fluorescence quenching was measured as pellets were exposed to 0.28 - 0.56 mM iron (II or III). After 10 minutes of exposure to iron, ferrous ion caused a small fluorescence quenching (89 - 97% of the initial fluorescence, over the range of iron tested) while ferric ion caused much greater quenching (65 - 88%). The most specific and linear response was observed for pyoverdin immobilized in sol-gel C. In contrast, a solution of pyoverdin (3.0 μM) exposed to iron (II or III) for 10 minutes showed an increase in fluorescence (101 - 114%) at low ferrous concentrations (0.45 - 2.18 μM) while exposure to all ferric ion concentrations (0.45 - 3.03 μM) caused quenching. In summary, the iron specificity of pyoverdin was improved by immobilizing it in sol-gel glass C.  相似文献   

19.
Zhou H  Groves JT 《Biophysical chemistry》2003,105(2-3):639-648
Synthetic hemoprotein model compounds are of great interest due to the vital roles and complexities of hemoproteins. This study reports a novel, self-assembled hemoprotein model, hemodextrin. The synthesis and characterization of py-PPCD (2(A)-monopyridylmethyl-perPEGylated-beta-cyclodextrin) (2) is described. The molecular design is based on a pegylated cyclodextrin scaffold that bears both a heme-binding pocket and an axial ligand that binds an iron porphyrin. The binding constant for Fe(III)TPPS [iron(III) meso-tetra(4-sulphonatophenyl)porphyrin] by py-PPCD (2) was determined to be 2 x 10(6) M(-1) at pH 6.0 by observing characteristic changes in the UV-Vis spectrum of the porphyrin. The pyridyl nitrogen of py-PPCD (2) was shown to ligate to the iron center by observing signal changes in the Fe(II)-porphyrin 1H-NMR spectrum. This hemodextrin ensemble was shown to bind dioxygen reversibly and to form a stable ferryl species.  相似文献   

20.
The kinetics and mechanism of Fe(III) reduction to Fe(II) were studied in pure batch cultures of Pseudomonas sp. 200. The rate of iron reduction has been mechanistically related to aqueous phase iron speciation. In the absence of microbial activity the iron reduction rate was negligible. Initial rates of microbial iron reduction were accelerated more than 20-fold by the addition of equimolar quantities of nitrilotriacetic acid (NTA) to media initially containing 1.86 x 10(-3)M total Fe(III). Numerical techniques were utilized to quantify relationships between the observed rate of Fe(II) production and the calculated (equilibrium) aqueous phase speciation. These results indicate that soluble ferric iron species are not equivalent in terms of their susceptibility to bacterial (dissimilative) iron reduction. The concentration of Fe(NTA)(OH)(2) (2-) correlated strongly with observed iron reduction rates. Ferrous iron species appeared to inhibit the reduction process.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号