首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
A Kumar  C M Gupta 《Biochemistry》1985,24(19):5157-5163
The effect of the altered polar head group of phosphatidylcholine (PC) on its transbilayer distributions in small unilamellar vesicles containing sphingomyelin (SM) was ascertained with phospholipase A2 as the external membrane probe. These vesicles were formed by sonication and fractionated by centrifugation. The vesicle size was determined by gel-permeation chromatography and solute entrapment. Experiments were done to confirm that phospholipase A2 treatments did not induce fusion, lyse the vesicles, or cause PC to migrate across the vesicle bilayer. The complete degradation of external PC in intact vesicles was assured by carrying out the enzyme reactions in the absence as well as in the presence of 9.2 X 10(-5) M bovine serum albumin. In small vesicles comprised of SM and 30 mol % 1,2-dipalmitoyl-sn-glycero-3-phosphocholine (DPPC), DPPC preferentially distributed in the inner monolayer. This preference of DPPC in these vesicles disappeared upon introducing one C2H5 group at the carbon atom adjacent to the quaternary ammonium residue in its polar head group and was reversed when the C2H5 group was replaced by C6H5 and C6H5CH2 substituents or when the P-N distance was increased. These results indicate that the effective polar head-group volume is an important factor in determining the phospholipid distributions across the small vesicle bilayer.  相似文献   

2.
L J Lis  V A Parsegian  R P Rand 《Biochemistry》1981,20(7):1761-1770
We have confirmed that CaCl2 swells the multilayer lattice formed by dipalmitolyphosphatidylcholine (DPPC) in an aqueous solution. Specifically, at room temperature 1 mM CaCl2 causes these lipid bilayers to increase their separation, dw, from 19 A in pure water to greater than 90 A. CaCl2 concentrations greater than 4 mM cause less swelling. We have measured the net repulsive force between the bilayers in 30 mM CaCl2 at T = 25 degrees C (below the acyl chain freezing temperature). For interbilayer separations between 30 and 90 A, the dominant repulsion between bilayers is probably electrostatic; Ca2+ binds to DPPc lecithin bilayers, imparting a charge to them. The addition of NaCl to CaCl2 solutions decreases this repulsion. For dw less than 20 A, the bilayer repulsion appears to be dominated by the "hydration forces" observed previously between both neutral and charged phospholipids. From the electrostatic repulsive force, we estimate the extent of Ca2+ binding to the bilayer surface. The desorption and bound Ca2+, apparent when bilayers are pushed together, is more rapid than one would expect if an association constant governed Ca2+ binding. The association affinity does not appear to be a fixed quantity but rather a sensitive function of ionic strength and bilayer separation.  相似文献   

3.
The lipid head groups in the inner leaflet of unilamellar bilayer vesicles of the synthetic lipids DHPBNS and DDPBNS can be selectively oligomerised. Earlier studies have established that these vesicles fuse much slower and less extensively upon oligomerisation of the lipid head groups. The morphology and calcium-induced fusion of vesicles of DHPBNS and DDPBNS were investigated using cryo-electron microscopy. DHPBNS vesicles are not spherical but flattened, ellipsoidal structures. Upon addition of CaCl(2), DHPBNS vesicles with an oligomerised inner leaflet were occasionally observed in an arrested hemifused state. However, the evidence for hemifusion is not equivocal due to potential artefacts of sample preparation. DDPBNS vesicles show the expected spherical morphology. Upon addition of excess CaCl(2), DDPBNS vesicles fuse into dense aggregates that show a regular spacing corresponding to the bilayer width. Upon addition of EDTA, the aggregates readily disperse into large unilamellar vesicles. At low concentration of calcium ion, DDPBNS vesicles with an oligomerised inner leaflet form small multilamellar aggregates, in which a spacing corresponding to the bilayer width appears. Addition of excess EDTA results in slow dispersal of the Ca2+-lipid aggregates into a heterogeneous mixture of bilamellar, spherical vesicles and networks of thread-like vesicles. These lipid bilayer rearrangements are discussed within the context of shape transformations and fusion of lipid membranes.  相似文献   

4.
Large unilamellar vesicles of dipalmitoylphosphatidylcholine (DPPC) were prepared by sonication and were fractionated by gel filtration on Sepharose Cl-2B in the size range from 180- to 380-A Stokes radii. Negatively stained electron micrographs of these preparations indicated the presence of unilamellar, spheroidal structures of the expected size. Fluorescence polarization of diphenylhexatriene, dissolved in the vesicles, revealed progressively broader phase transitions, shifted to lower temperatures for vesicles of decreasing sizes. The fractionated unilamellar vesicles and multilamellar vesicles of DPPC were reacted with human apolipoprotein A-I at 41 degrees C for periods from 1 to 120 h. The reaction mixtures were then passed through a Bio-Gel A-5m column to separate unreacted lipid vesicles and protein from micellar complexes of DPPC with apolipoprotein A-I. Smaller vesicles were much more reactive than larger vesicles or multilamellar vesicles with the apolipoprotein. This difference in reactivity was explained by the increasing bilayer curvature of smaller vesicles which changes the packing of DPPC molecules in the bilayer and facilitates its penetration by the apolipoprotein.  相似文献   

5.
J T Kim  J Mattai  G G Shipley 《Biochemistry》1987,26(21):6599-6603
Mixed phospholipid systems of ether-linked 1,2-dihexadecylphosphatidylcholine (DHPC) and ester-linked 1,2-dipalmitoylphosphatidylcholine (DPPC) have been studied by differential scanning calorimetry and X-ray diffraction. At maximum hydration (60 wt % water), DHPC shows three reversible transitions: a main (chain melting) transition, TM = 44.2 degrees C; a pretransition, TP = 36.2 degrees C; and a subtransition, TS = 5.5 degrees C. DPPC shows two reversible transitions: TM = 41.3 degrees C and TP = 36.5 degrees C. TM decreases linearly from 44.2 to 41.3 degrees C as DPPC is incorporated into DHPC bilayers; TP exhibits eutectic behavior, decreasing sharply to reach 23.3 degrees C at 40.4 mol % DPPC and then increasing over the range 40-100 mol % DPPC; TS remains constant at 4-5 degrees C and is not observed at greater than 20 mol % DPPC. At 50 degrees C, X-ray diffraction shows a liquid-crystalline bilayer L alpha phase at all DHPC:DPPC mole ratios. At 22 degrees C, DHPC shows an interdigitated bilayer gel L beta phase (bilayer periodicity d = 47.0 A) into which approximately 30 mol % DPPC can be incorporated. Above 30 mol % DPPC, a noninterdigitated gel L beta' phase (d = 64-66 A) is observed. Thus, at T greater than TM, DHPC and DPPC are miscible in all proportions in an L alpha bilayer phase. In contrast, a composition-dependent gel----gel transition between interdigitated and noninterdigitated bilayers is observed at T less than TP, and this leads to eutectic behavior of the DHPC/DPPC system.  相似文献   

6.
The tryptophan fluorescence emission intensity at 340 nm of monomeric phospholipase A2 from Agkistrodon piscivorus piscivorus increased about 70% upon addition of dipalmitoylphosphatidylcholine small unilamellar vesicles (DPPC SUV) at 25 degrees C. The emission spectrum was also blue-shifted 6-8 nm, suggesting that the environment of 1 or more tryptophan residues had become less polar. This effect of SUV on the phospholipase A2 fluorescence was independent of Ca2+ at 25 degrees C, and the apparent association constant for the interaction was approximately 1.7 x 10(4) M-1. The apparent Km for hydrolysis of DPPC SUV was equal to the inverse of the estimated association constant. In the absence of Ca2+, the change in fluorescence intensity decreased with increasing temperature. Thermodynamic analysis of this reversible, temperature-dependent fluorescence change indicated that the A. p. piscivorus monomer phospholipase A2 interacts only with SUV in the true gel phase existing below the pretransition of gel to "ripple" phase lipid in the absence of Ca2+. In contrast, the fluorescence intensity change upon addition of SUV in the presence of Ca2+ was independent of temperature over the range of 25-48 degrees C. Under these conditions, hydrolysis of the lipid occurred concomitantly with the change in fluorescence which could not be reversed by the addition of EDTA. With a nonhydrolyzable analog of DPPC, however, the fluorescence changes upon mixing of SUV, Ca2+, and phospholipase A2 were reversible and temperature-dependent. Thus, the apparent irreversibility of the change in fluorescence observed with Ca2+ and DPPC SUV was correlated with hydrolysis of the vesicles. These results indicate that the magnitude of the initial interaction of enzyme with substrate is reversible, is Ca2+-independent, depends upon the lipid state, and is quantitatively correlated to the maximum rate of hydrolysis.  相似文献   

7.
The requirement of extracellular Ca2+ for insulin action has been indicated by past studies. With a view to understand the interaction of insulin with Ca2+ in the vicinity of the cell membrane, we have examined the ability of insulin and its constituent polypeptide chains A and B to translocate Ca2+ and Mg2+ across the lipid bilayer in two sets of synthetic liposomes. The first were unilamellar vesicles made of dimyristoylphosphatidylcholine and contained the Ca2+ sensor dye arsenazo III. Peptide-mediated Ca2+ and Mg2+ transport in these vesicles was monitored at 37 degrees C in a neutral buffer containing CaCl2 or MgCl2 using a difference absorbance method. In the second set, multilamellar vesicles of egg lecithin containing trapped fura-2 were employed and the cation transport was followed at 20 degrees C by fluorescence changes in the dye. Control experiments indicated that the hormonal peptides caused no appreciable perturbation of the vesicles leading to leakage of contents or membrane fusion. In both liposome systems, substantial Ca2+ and Mg2+ transport was observed with insulin and the B chain; the A chain was less effective as an ionophore. Quantitative analysis of the transport kinetic data on the B chain showed a 1:1 peptide-Ca2+ complex formed inside the membrane. In light of the available structural data on Ca2+ binding by insulin and insulin receptor, our results suggest the possibility of the hormone interacting with the receptor with the bound Ca2+.  相似文献   

8.
We have investigated the initial kinetics of Ca2+-induced aggregation and fusion of phosphatidylserine large unilamellar vesicles at 3, 5 and 10 mM Ca2+ and 15, 25 and 35 degrees C, utilizing the Tb/dipicolinate (Tb/DPA) assay for mixing of aqueous vesicle contents and a resonance energy transfer (RET) assay for mixing of bilayer lipids. Separate rate constants for vesicle aggregation as well as deaggregation and for the fusion reaction itself were determined by analysis of the data in terms of a mass action kinetic model. At 15 degrees C the aggregation rate constants for either assay are the same, indicating that at this temperature all vesicle aggregation events that result in lipid mixing lead to mixing of aqueous contents as well. By contrast, at 35 degrees C the RET aggregation rate constants are higher than the Tb/DPA aggregation rate constants, indicating a significant frequency of reversible vesicle aggregation events that do result in mixing of bilayer lipids, but not in mixing of aqueous vesicle contents. In any conditions, the RET fusion rate constants are considerably higher than the Tb/DPA fusion rate constants, demonstrating the higher tendency of the vesicles, once aggregated, to mix lipids than to mix aqueous contents. This possibly reflects the formation of an intermediate fusion structure. With increasing Ca2+ concentrations the RET and the Tb/DPA fusion rate constants increase in parallel with the respective aggregation rate constants. This suggests that fusion susceptibility is conferred on the vesicles during the process of vesicle aggregation and not solely as a result of the interaction of Ca2+ with isolated vesicles. Aggregation of the vesicles in the presence of Mg2+ produces neither mixing of aqueous vesicle contents nor mixing of bilayer lipids.  相似文献   

9.
Interactions of divalent cations with phosphatidylserine bilayer membranes   总被引:3,自引:0,他引:3  
The interaction of divalent cations with a homologous series of diacylphosphatidylserines (diacyl-PS) has been studied by differential scanning calorimetry and X-ray diffraction. Hydrated di-C14-PS (DMPS) exhibits a gel leads to liquid-crystal bilayer transition at 39 degrees C (delta H = 7.2 kcal/mol of DMPS). With increasing MgCl2 concentration, progressive conversion to a phase exhibiting a high melting (98 degrees C), high enthalpy (delta H congruent to 11.0 kcal/mol of DMPS) transition is observed. Similar behavior is observed for DMPS with increasing CaCl2 concentration. In this case, the high-temperature transition of the Ca2+-DMPS complex occurs at approximately 155 degrees C and is immediately followed by an exothermic transition probably associated with PS decomposition. For di-C12-, di-C14-, di-C16- (DPPS), and di-C18-PS, the transition temperatures of the Ca2+-PS complexes are in the range 151-155 degrees C; only di-C10-PS exhibits a significantly lower value, 142 degrees C. A different pattern of behavior is exhibited by DPPS in the presence of Sr2+ or Ba2+, with transitions in the range 70-80 degrees C being observed. X-ray diffraction of the Ca2+-PS complexes at 20 degrees C provides evidence of structural homology. All Ca2+-PS complexes exhibit bilayer structures, the bilayer periodicity increasing linearly from 35.0 A for di-C10-PS to 52.5 A for di-C18-PS. Wide-angle X-ray diffraction data indicate that hydrocarbon chain "crystallization" occurs on Ca2+-PS complex formation.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

10.
J Wilschut  S Nir  J Scholma  D Hoekstra 《Biochemistry》1985,24(17):4630-4636
We have investigated the kinetics of Ca2+-induced aggregation and fusion of large unilamellar vesicles composed of an equimolar mixture of bovine heart cardiolipin and dioleoylphosphatidylcholine. Mixing of bilayer lipids was monitored with an assay based on resonance energy transfer (RET) and mixing of aqueous vesicle contents with the Tb/dipicolinate assay. The results obtained with either assay were analyzed in terms of a mass action kinetic model, providing separate rate constants for vesicle aggregation and for the fusion reaction proper. At different Ca2+ concentrations, either at 25 degrees C or at 37 degrees C, aggregation rate constants derived from the data obtained with the RET assay were the same as those derived from the Tb/dipicolinate data, indicating that mixing of bilayer lipids occurred only during vesicle aggregation events that resulted in mixing of aqueous contents as well. At 25 degrees C, identical fusion rate constants were obtained with either assay, indicating that at this temperature the probability of lipid mixing and that of aqueous contents mixing, occurring after vesicle aggregation, were the same. The fusion rate constants for the RET assay increased more steeply with increasing temperature than the fusion rate constants derived from the Tb/dipicolinate data. As a result, at 37 degrees C the tendency of the vesicles, after aggregation, to mix lipids was slightly higher than their tendency to mix aqueous contents. The aggregation rate constants increased steeply with Ca2+ concentrations increasing in a narrow range (9.5-11 mM), indicating that, in addition to a Ca2+-dependent charge neutralization on the vesicle surface, structural changes in the lipid bilayer are involved in the aggregation process.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

11.
1H-NMR spectroscopy of small, unilamellar dipalmitoyl phosphatidylcholine (DPPC) vesicles in conjunction with the lanthanide shift reagent Pr3+ was used to study the effect of Zn2+ and Ca2+ ions on the permeability induced at the lipid phase transition temperature (Tc) of the vesicles and by the bee venom polypeptide melittin. In addition, the effects of Zn2+ and Ca2+ were studied on Triton X-100 stabilized channels at Tc and in the presence of n-alcohols. The results show that the presence of 10 mM Zn2+ and Ca2+ inhibited most of the forms of vesicular permeability investigated. The results are discussed in terms of the nature of the binding of the metal ions to the vesicles and support the proposal that one biological function of Zn2+ and Ca2+ is protection against membrane damage.  相似文献   

12.
Molecular motion of dipalmitoylphosphatidylcholine (DPPC)/CaCl2 lamellae in a gel phase was studied by pulse NMR. Proton 1/T1 for DPPC in a gel phase showed that the rate of reorientation about the long axis of the lipid molecule decreased gradually from 0 to 500 mM CaCl2. At 10-50 mM CaCl2 the correlation time reached the value of the inverse Larmor frequency (approx. 2.6 ns). A proton NMR absorption spectrum and a spin-pair-dipolar-echo (SPDE) decay showed that the second moment in the hydrocarbon chain region decreased below about 1 mM CaCl2 and increased from 1 to 500 mM CaCl2. The second moment in the polar head group increased gradually with an increase in the CaCl2 concentration. The increase in the second moment at the high CaCl2 concentrations was attributed to an increase in the order parameters of the segments both in the polar head group and in the hydrocarbon chain region. At the lower CaCl2 concentrations, however, calcium ion possibly induced disorder in the lamellae which led to a decrease in the order parameter in the hydrocarbon chain region.  相似文献   

13.
J A Hamilton 《Biochemistry》1989,28(6):2514-2520
Interactions of carbonyl 13C-enriched triacylglycerols (TG) with phospholipid bilayers [egg phosphatidylcholine (PC), dipalmitoylphosphatidylcholine (DPPC), and an ether-linked phosphatidylcholine] were studied by 13C NMR spectroscopy. Up to 3 mol % triolein (TO) or tripalmitin (TP) was incorporated into DPPC vesicles by cosonication of the TG and DPPC at approximately 50 degrees C. NMR studies were carried out in a temperature range (30-50 degrees C) in which pure TO is a liquid whereas pure TP is a solid. In spectra of DPPC vesicles with TG at 40-50 degrees C, both TO and TP had narrow carbonyl resonances, indicative of rapid motions, and chemical shifts indicative of H bonding of the TG carbonyls with solvent (H2O) at the aqueous interfaces of the vesicle bilayer. Below the phase transition temperature of the DPPC/TG vesicles (approximately 36 degrees C), most phospholipid peaks broadened markedly. In DPPC vesicles with TP, the TP carbonyl peaks broadened beyond detection below the transition, whereas in vesicles with TO, the TO carbonyl peaks showed little change in line width or chemical shift and no change in the integrated intensity. Thus, in the gel phase, TP solidified with DPPC, whereas TO was fluid and remained oriented at the aqueous interfaces. Egg PC vesicles incorporated up to 2 mol % TP at 35 degrees C; the TP carbonyl peaks had line-width and chemical shift values similar to those for TP (or TO) in liquid-crystalline DPPC. TO incorporated into ether-linked PC had properties very similar to TO in ester-linked PC.(ABSTRACT TRUNCATED AT 250 WORDS)  相似文献   

14.
Previously, we showed that the proton permeability of small unilamellar vesicles (SUVs) composed of polar lipid fraction E (PLFE) from the thermoacidophilic archaeon Sulfolobus acidocaldarius was remarkably low and insensitive to temperature (Komatsu and Chong 1998). In this study, we used photon correlation spectroscopy to investigate the time dependence of PLFE SUV size as a function of Ca2+ concentration. In the absence of Ca2+, vesicle diameter changed little over 6 months. Addition of Ca2+, however, immediately induced formation of vesicle aggregates with an irregular shape, as revealed by confocal fluorescence microscopy. Aggregation was reversible upon addition of EDTA; however, the reversibility varied with temperature as well as incubation time with Ca2+. Freeze-fracture electron microscopy showed that, after a long period of incubation (2 weeks) with Ca2+, the PLFE vesicles had not just aggregated, but had fused or coalesced. The initial rate of vesicle aggregation varied sigmoidally with Ca2+ concentration. At pH 6.6, the threshold calcium concentration (Cr) for vesicle aggregation at 25 and 40 degrees C was 11 and 17 mM, respectively. At pH 3.0, the Cr at 25 degrees C increased to 25 mM. The temperature dependence of Cr may be attributable to changes in membrane surface potential, which was -22.0 and -13.2 mV at 25 and 40 degrees C, respectively, at pH 6.6, as determined by 2-(p-toluidinyl)naphthalene-6-sulfonic acid fluorescence. The variation in surface potential with temperature is discussed in terms of changes in lipid conformation and membrane organization.  相似文献   

15.
A protease delivery system was developed for the exclusive and controlled digestion of proteins exposed at the morphological inside (periplasmic surface) of Rhodobacter sphaeroides chromatophores. In this procedure, proteinase K is encapsulated within large unilamellar liposomes which are fused to the chromatophores in the presence of Ca2+ ions. The liposomes were prepared by a detergent dialysis procedure from native phosphatidylglycerol and found to undergo rapid bilayer fusion with purified chromatophore preparations above a threshold concentration of 12.5 mM CaCl2. The fusion process was complete within 10 min at 35 mM Ca2+ with about 80% of the pigment located in the fusion products. Electron micrographs of freeze-fracture replicas confirmed the intermixing of the lipid bilayers and the unilamellar structure of the fused membrane vesicles. The procedure did not affect the labile B800 chromophore of the B800-850 antenna complex, but reduced slightly the absorption due to the B875 core antenna. Emission from both light-harvesting complexes was increased in the fused membranes, suggesting a partial dissociation of photosynthetic units in the expanded bilayer. The results, together with those presented in the following paper (Theiler, R., and Niederman, R. A. (1991) J. Biol. Chem. 266, 23163-23168), demonstrate that this new method fulfills the stringent requirements for a successful delivery of macromolecules to the chromatophore interior.  相似文献   

16.
M Masserini  E Freire 《Biochemistry》1986,25(5):1043-1049
The thermotropic behavior of dipalmitoylphosphatidylcholine and distearoylphosphatidylcholine large unilamellar vesicles containing ganglioside GM1 of homogeneous long chain base composition has been studied by high-sensitivity differential scanning calorimetry and fluorescence spectroscopy. At neutral pH and in the absence of Ca2+, the thermotropic behavior of these systems is independent of the ganglioside chain length composition. The presence of Ca2+ at concentrations higher than 5 mM induces ganglioside phase separation in a manner dependent upon the length difference between the ganglioside long chain base and the phosphatidylcholine acyl chains. The analysis of the chain length dependence of the thermotropic behavior suggests that the driving force for ganglioside phase separation is not a Ca2+-induced cross-bridging of the ganglioside head group but a passive ganglioside exclusion from Ca2+-perturbed phosphatidylcholine-rich regions within the bilayer. Experiments with native ganglioside GM1, primarily a mixture of C18:1 and C20:1 long chain bases, indicate that the individual components of the mixture maintain their characteristic behavior within the lipid bilayer matrix. These results, together with the presence of a phase transition in native GM1 micellar dispersions, absent in purified C18:1 or C20:1 ganglioside micelles, strengthen the idea of a possible role of chain length composition in the modulation of ganglioside function.  相似文献   

17.
Palmitoyl-, myristoyl- and lauroylcarnitine destabilize small unilamellar vesicles of 1,2-dipalmitoyl-n-glycero-3-phosphorylcholine (DPPC) and 1,2-dimyristoyl-n-glycero-3-phosphorylcholine (DMPC) into multilamellar liposomes. Their effect on the bilayer is dependent on the acyl chain length of the acylcarnitine, the ratio of the lengths of the acyl chains of the phospholipid and the acylcarnitine and the molar ratio of the phospholipid to acylcarnitine but not the absolute concentration of the acylcarnitine in the solute. Sarcoplasmic reticulum vesicles are broken down by each of the acylcarnitines at concentrations below their critical micellar concentrations (CMC). These three acylcarnitines stimulate the Mg2+, Ca2+-ATPase activity in SR-vesicles to a certain maximum, after which a net inhibition is observed. The maximum degree of stimulation depends highly on acyl chain length: the shorter the chain length, the more effective. In the same concentration range where the Mg2+, Ca2+-ATPase activity is increased, the net Ca2+-uptake is markedly decreased.  相似文献   

18.
The effects of tumour promoters, namely phorbol esters and teleocidin, on the activity of porcine pancreatic phospholipase A2 (PLA2) was investigated by using a system of small unilamellar vesicles composed of dipalmitoyl-phosphatidylcholine (DPPC). DPPC vesicles encapsulating Quin 2 (Quin 2/DPPC vesicles) were suspended in a medium containing Ca2+. The addition of PLA2 to Quin 2/DPPC vesicles increased the fluorescence intensity of Quin 2. This increase was due to chelation of Quin 2 with Ca2+, which resulted from an increase in the permeability of the phospholipid bilayer caused by the hydrolytic activity of PLA2. The tumour promoters phorbol 12-myristate 13-acetate (PMA) and teleocidin, at low concentrations, enhanced PLA2 activity at temperatures below the phase-transition temperature of the membrane, but, in contrast, high concentrations of the tumour promoters suppressed PLA2 activity. Phorbol 12-myristate (PM) also had a similar effect on PLA2 activity. PMA and PM disturbed the membrane structure markedly, which was indicated by the enhanced leakage of carboxyfluorescein (CF) from DPPC vesicles encapsulating CF. On the other hand, phorbol 12,13-didecanoate and 4 alpha-phorbol 12,13-didecanoate, which did not disturb the membrane structure to the same extent, had an insignificant effect on PLA2 activity. It is therefore concluded that PLA2 catalyses the hydrolysis of phospholipids in bilayer vesicles which contain a moderate degree of structural defects. However, the effects of tumour promoters on PLA2 activity was not related to their potencies as inflammatory and tumour-promoting agents.  相似文献   

19.
Using a heat conduction calorimeter with very high resolution (+/- 0.00005 J/degrees C.cm3), we have measured the specific heat CpL between 25 and 35 degrees C of dimyristoylphosphatidylcholine (DMPC) in aqueous dispersions. Previous studies of the temperature dependence of the chemical potential of DMPC in the L alpha phase (lamellar, liquid crystalline) indicated that a dispersion consisting only of unilamellar vesicles forms spontaneously at a critical temperature T* of 29.0 degrees C. Our present measurements show an anomaly in CpL between 28.70 and 29.50 degrees C: the curve for CpL versus T first decreases and then exhibits an inflection point at 28.96 degrees C before it flattens. This anomaly is attributed to the transformation from multilamellar dispersion to unilamellar vesicles at T* = 28.96 degrees C. Two independent properties of the CpL data also indicate T* is a critical point for the formation of unilamellar vesicles: (a) the time to reach equilibrium upon changing temperature increased dramatically between 28.7 and 28.96 degrees C, increasing as (T* - T)-1; at T > T* the dramatic "slowing-down" phenomenon was not observed. This slowing-down near T* is a general characteristic of critical phenomena. (b) The free energy change for the multilamellar-unilamellar transformation was obtained from the CpL-T data over this temperature interval and found to be 3.2 J/mol or 0.016 ergs/cm2 of bilayer, in agreement with other estimates of the interaction energy between neutral bilayers. We conclude with a discussion of the implications for membrane bilayer stability of these newly identified dynamic properties of the transformation.  相似文献   

20.
The effect of Ca2+ on a gel-to-liquid crystal transition as well as the mechanical properties of dipalmitoylphosphatidylcholine bilayers was studied by an ultrasonic technique. Transition temperature increased with increase in Ca2+ concentration, whereas the variation of ultrasonic anomalies indicated that dipalmitoylphosphatidylcholine bilayers exhibited maximum pseudocritical fluctuation at a Ca2+ concentration of about 10 mM. Hardening of dipalmitoylphosphatidylcholine membranes due to the Ca2+ binding was observed above 10 mM CaCl2, suggesting the lateral compression of the lipid bilayer by bound Ca2+. Long-range attraction between bound Ca2+ and the head groups of surrounding lipid molecules was proposed from these calcium effects.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号