首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cellulose tris(3-chloro-4-methylphenylcarbamate) was coated onto native and aminopropylsilanized silica in order to prepare chiral stationary phases (CSPs) for enantioseparations using nano-liquid chromatography (nano-LC) and capillary electrochromatography (CEC). The effect of the chiral selector loading onto silica, mobile phase composition and pH, as well as separation variables on separation of enantiomers was studied. It was found that CSPs based on cellulose tris(3-chloro-4-methylphenylcarbamate) can be used for preparation of very stable capillary columns useful for enantioseparations in nano-LC and CEC in combination with polar organic mobile phases.  相似文献   

2.
The chiral resolution of seven aromatase inhibitors (four triazole derivatives (Ia, Ib, Ic, and Id) and three tetrazole derivatives (IIa, IIb, and IIc)) was achieved on Chiralcel OJ-R [cellulose tris (4-methyl benzoate)], Chiralcel OD-RH [cellulose tris (3,5-dimethylphenyl carbamate)], and Chiralpak AD-RH [amylose tris (3,5-dimethylphenyl carbamate)] chiral stationary phases. The mobile phases used were A: 2-PrOH-MeCN (90:10, v/v); B: 2-PrOH-MeCN (50:50, v/v); C: MeCN-H(2)O (50:50, v/v); D: MeCN-H(2)O (80:20, v/v); and E: MeCN-H(2)O (95:05, v/v). The flow rate was 0.5 mL/min for all the mobile phases. The resolution capability of these chiral stationary phases were in the order Chiralpak AD-RH > Chiralcel OD-RH > Chiralcel OJ-R. The values of alpha and Rs of the resolved enantiomers of the aromatase inhibitors varied from 1.02-5.63 and 1. 12-6.72, respectively.  相似文献   

3.
The enantioselective and chromatographic properties of Chiralpak AD and Chiralpak IA as well as those of Chiralcel OD and Chiralpak IB have been evaluated using a set of 48 compounds that differ in their physical and chemical properties. The impact of the different immobilisation methodologies of the chiral polysaccharide, i.e., coated or immobilized on retention and enantioselectivity was studied. The study on immobilized chiral stationary phases (CSPs) was expanded to also include mobile phases containing mixtures of alkanes and more non-conventional solvents such as ethyl acetate, ethers, acetone and dichloromethane. In this paper we report some of the general trends observed for the 48 racemic compounds with respect to retention, alpha and Rs. Further, the impact of the immobilisation methodology and the choice of the mobile phase on the elution order of the enantiomers is also discussed.  相似文献   

4.
A series of 4‐iminonaringenin derivatives 2 ‐ 6 have been prepared in good overall yields from a condensation reaction between naringenin and primary amines. The structures of all products were confirmed by ultraviolet, infrared, proton nuclear magnetic resonance, and carbon‐13 nuclear magnetic resonance spectroscopic techniques. These derivatives were analyzed by high‐performance liquid chromatography using polysaccharide‐based chiral stationary phases, namely, Chiralpak IB and Chiralcel OD, using various mobile phases. 2‐Propanol showed a high enantioselectivity for naringin and its derivatives using achiral column containing immobilized polysaccharides (Chiralpak IB).  相似文献   

5.
We describe the preparation of racemic N,N-dimethyl-3-(naphthalen-2-yl)-butan-1-amines, potential sigma1 ligands, and their resolution via chiral HPLC. In order to obtain enantiopure compounds, direct chromatographic methods of separation using chiral stationary phases were investigated. Different methods suitable for both analytical and semipreparative purposes are proposed. The best resolutions were achieved using cellulose tris (3,5-dimethylphenyl carbamate) (Chiralcel OD and OD-H) and amylose tris (3,5-dimethylphenyl carbamate) (Chiralpak AD). On the basis of the preliminary chromatographic results, the resolution of compound 1 was transferred onto a Chiralcel OD semipreparative column. The enantiomers were obtained in high enantiomeric excess. The configurational assignment was performed by circular dichroism. Computational analysis was used to explore the enantioselective recognition process of compound 1 with the Chiralcel OD stationary phase.  相似文献   

6.
A comparison of the enantiomeric resolution of (+/-)-threo-methylphenidate (MPH) (Ritalin) was achieved on different polysaccharide based chiral stationary phases. The mobile phase used was hexane-ethanol-methanol-trifluoroacetic acid (480:9.75:9.75:0.5, v/v/v/v). Benzoic acid and phenol were used as the mobile phase additives for the enantiomeric resolution of MPH on Chiralcel OB column only. The alpha values for the resolved enantiomers were 1.34, 1.29, 1.30, and 1.24 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase) columns, respectively. The R(s) values were 1.82, 1.53, 1.19, and 1.10 on Chiralpak AD, Chiralcel OD, Chiralcel OB (containing 0.2 mM benzoic acid in mobile phase), and Chiralcel OB (containing 0.2 mM phenol in mobile phase), respectively. The role of benzoic acid and phenol as mobile phase additives is discussed.  相似文献   

7.
Xu Z  Ding Z  Xu X  Xie X 《Chirality》2008,20(2):147-150
The HPLC chiral separation of 21 kinds of 2-aryl-1,3-dicarbonyl analogues was investigated in normal phase mode with amylose tris(3,5-dimethylphenylcarbamate), amylose tris((S)-1-phenylethylcarbamate), cellulose tris(3,5-dimethylphenylcarbamate), and cellulose tris(4-methylbenzoate) chiral stationary phases, respectively. The whole set of 2-aryl-1,3-dicarbonyl analogues shows better enantioselectivity and enantioseparation on amylose tris(3,5-dimethylphenyl carbamate) (Chiralpak AD-H). The temperature dependence of enantioselectivity was studied to improve the enantioseparation. In addition, efforts are made to relate analyte structure with the quality of the achieved chiral separation.  相似文献   

8.
Droux S  Félix G 《Chirality》2011,23(Z1):E105-E109
We report here the application of subcritical water in chiral separations on two popular polysaccharide chiral stationary phases (CSPs): Chiralpak AD and Chiralcel OD. The behavior of these two CSPs was studied under reversed phase conditions at room temperature to discover the maximum percentage of water in the mobile phase, which provided the separation of enantiomers of flavanone and benzoin, respectively, in a reasonable time (i.e., less than 1 h). Then, the stability of Chiralpak AD and Chiralcel OD versus temperature was investigated and discussed. Chiralcel OD separation of flavanone racemate was obtained at 120 °C with water and 2-propanol (80/20) as the mobile phase, while benzoin racemate was separated in pure water at 160 °C. Separations of several racemates were also presented, and advantages and limitations of the technique were discussed.  相似文献   

9.
The HPLC enantiomeric separation of 29 racemic bridged polycyclic compounds was examined on commercially available Chiralcel OD-H and Chiralpak OT(+) columns. The separations were evaluated under normal-phase mode (hexane containing mobile phase) for Chiralcel OD-H and under normal-phase as well as under reversed-phase mode (pure MeOH, temperature 5 degrees C) for Chiralpak OT(+). Almost all compounds were resolved either on Chiralcel OD-H or on Chiralpak OT(+), in some cases on both. The use of trifluoroacetic acid (TFA), as modifier of the hexanic mobile phase, had a beneficial effect on the enantioseparation of some polar and acidic compounds on Chiralcel OD-H. The influence of small chemical structural modifications of the analytes on the enantioseparation behavior is discussed. A structure-retention relationship has been observed on both stationary phases. This chromatographic evaluation may provide some information about the chiral recognition mechanism: in the case of Chiralcel OD-H, hydrogen bonding, pi-pi and distereoselective repulsive are supposed to be the major analyte-CSP interactions. In the case of Chiralpak OT(+), a reversed-phase enantioseparation could take place through hydrophobic interactions between the aromatic moiety of the analytes and the chiral propeller structure of the CSP. The synthesis of some unknown racemic bromobenzobicyclo[2.2.1] analytes is also described.  相似文献   

10.
Liquid chromatographic enantiomer separation of several N‐benzyloxycarbonyl (CBZ) and Ntert‐butoxycarbonyl (BOC) α‐amino acids and their corresponding ethyl esters was performed on covalently immobilized chiral stationary phases (CSPs) (Chiralpak IA and Chiralpak IB) and coated‐type CSPs (Chiralpak AD and Chiralcel OD) based on polysaccharide derivatives. The solvent versatility of the covalently immobilized CSPs in enantiomer separation of N‐CBZ and BOC‐α‐amino acids and their ester derivatives was shown and the chromatographic parameters of their enantioselectivities and resolution factors were greatly influenced by the nature of the mobile phase. In general, standard mobile phases using 2‐propanol and hexane on Chiralpak IA showed fairly good enantioselectivities for resolution of N‐CBZ and BOC‐α‐amino acids and their esters. However, 50% MTBE/hexane (v/v) for resolution of N‐CBZ‐α‐amino acids ethyl esters and 20% THF/hexane (v/v) for resolution of N‐BOC‐α‐amino acids ethyl esters afforded the greatest enantioselectivities on Chiralpak IA. Also, liquid chromatographic comparisons of the enantiomer resolution of these analytes were made on amylose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IA and Chiralpak AD) and cellulose tris(3,5‐dimethylphenylcarbamate)‐derived CSPs (Chiralpak IB and Chiralcel OD). Chiralpak AD and/or Chiralcel OD showed the highest enantioselectivities for resolution of N‐CBZ‐α‐amino acids and esters, while Chiralpak AD or Chiralpak IA showed the highest resolution of N‐BOC‐α‐amino acids and esters. Chirality 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

11.
Tang S  Li X  Wang F  Liu G  Li Y  Pan F 《Chirality》2012,24(2):167-173
Four regioselective-carbamoylated cellulose derivatives having two different substituents at 2-, 3-, and 6-position were prepared and evaluated as chiral stationary phases (CSPs) for high-performance liquid chromatography. Investigations showed that the nature and arrangement of the substituents significantly influenced the chiral recognition abilities of the heterosubstituted cellulose derivatives and each derivative exhibited characteristic enantioseparation. Some racemates were better resolved on these derivatives than the corresponding homogeneously substituted cellulose derivatives including a commercial CSP, Chiralcel OD. Racemic compounds shown in this study were most effectively discriminated on cellulose 2,3-(3-chloro-4-methylphenylcarbamate)-6-(3,5-dimethylphenylcarbamate) and 2,3-(3,5-dimethylphenylcarbamate)-6-(3-chloro-4-methylphenylcarbamate).  相似文献   

12.
Hui Liu  Wei Ding 《Chirality》2019,31(3):219-229
Prothioconazole is a type of broad‐spectrum triazole thione fungicide developed by the Bayer Company. Prothioconazole‐desthio is the main metabolite of prothioconazole in the environment. In our study, enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on various chiral stationary phases (CSPs) by high‐performance liquid chromatography (HPLC). It was found that polysaccharide CSPs showed better ability than brushing CSPs in enantiomeric separation. The successful chiral separation of prothioconazole could be achieved on self‐made Chiralcel OD, commercialized Chiralcel OJ‐H and Lux Cellulose‐1. Chiralpak IA, Chiralpak IB, Chiralpak IC, Chiralcel OD, Chiralpak AY‐H, Chiralpak AZ‐H, and Lux Cellulose‐1 realized the baseline separation of prothioconazole‐desthio enantiomers. Simultaneous enantiomeric separation of prothioconazole and prothioconazole‐desthio was performed on Lux Cellulose‐1 using acetonitrile (ACN) and water as mobile phase. In most cases, low temperature favored the separation of two compounds. The influence of the mobile phase ratio or type was deeply discussed. We obtained larger Rs and longer analysis time with a smaller proportion of isopropanol (IPA) or ethanol and more water content at the same temperature. The ratio of ACN and water had influences on the outflow orders of prothioconazole‐desthio enantiomers. This work provides a new approach for chiral separation of prothioconazole and prothioconazole‐desthio with a discussion of chiral separation mechanism on different CSPs.  相似文献   

13.
The HPLC enantiomeric separation of racemic indole alkaloids tacamonine, 17 alpha-hydroxytacamonine, deethyleburnamonine, and vindeburnol was accomplished using Chiralpak AD and Chiralcel OD as chiral stationary phases. Small structural differences affect the enantioselectivity ability of these phases. Single enantiomers of tacamonine and vindeburnol were isolated by semipreparative HPLC and their CD spectra and optical rotations were measured.  相似文献   

14.
Ghanem A  Al-Humaidi E 《Chirality》2007,19(6):477-484
The chiral recognition ability and solvent versatility of a new chiral stationary phase containing amylose 3,5-dimethylphenylcarabamate immobilized onto silica gel (CHIRALPAK IA) is investigated. Thus, the direct enantioselective separation of a set of racemic N-alkylated barbiturates and 3-alkylated analogs of thalidomide was conducted using different nonstandard solvents as eluent and diluent, respectively in high-performance liquid chromatography (HPLC). The separation, resolution, and elution order of the investigated compounds were compared on both immobilized and coated amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phases (Chiralpak IA and Chiralpak AD, respectively) using a mixture of n-hexane/2-propanol (90:10 v/v) as mobile phase with different flow-rates and fixed UV detection at 254 nm. The effect of the immobilization of the amylose tris(3,5-dimethylphenylcarbamate) chiral stationary phase on silica (Chiralpak IA) on the chiral recognition ability was noted as the bonded phase (Chiralpak IA) was superior in chiral recognition and possesses a higher resolving power in most of the reported cases than the coated one (Chiralpak AD). A few racemates were not or poorly resolved on the immobilized Chiralpak IA or the coated Chiralpak AD when using standard solvents were most efficiently resolved on the immobilized Chiralpak IA upon using nonstandard solvents. Furthermore, the immobilized phase withstands the nonstandard (prohibited) HPLC solvents such as dichloromethane, ethyl acetate, tetrahydrofuran, methyl-tert-butyl ether, and others when used as eluents or as a dissolving agent for the analyte itself. The direct analysis of a real sample extracted from plasma using DCM on Chiralpak IA is also shown.  相似文献   

15.
Enantioseparation of the antidiarrheal drug, racecadotril, was investigated by liquid chromatography using polysaccharide‐type chiral stationary phases in polar organic mode. The enantiodiscrimininating properties of 4 different chiral columns (Chiralpak AD, Chiralcel OD, Chiralpak AS, Chiralcel OJ) with 5 different solvents (methanol, ethanol, 1‐propanol, 2‐propanol, and acetonitrile) at 5 different temperatures (5–40 °C) were investigated. Apart from Chiralpak AS column the other 3 columns showed significant enantioseparation capabilities. Among the tested mobile phases, alcohol type solvents were superior over acetonitrile, and significant differences in enantioselective performance of the selector were observed depending on the type of alcohol employed. Van't Hoff analysis was used for calculation of thermodynamic parameters which revealed that enantioseparation is mainly enthalpy controlled; however, enthropic control was also observed. Enantiopure standard was used to determine the enantiomer elution order, revealing chiral selector—and mobile‐phase dependent reversal of enantiomer elution order. Using the optimized method (Chiralcel OJ stationary phase, thermostated at 10 °C, 100% methanol, flow rate: 0.6 mL/min) baseline separation of racecadotril enantiomers (resolution = 3.00 ± 0.02) was achieved, with the R‐enantiomer eluting first. The method was validated according to the ICH guidelines, and its application was tested on capsule and granules containing the racemic mixture of the drug.  相似文献   

16.
Mey B  Paulus H  Lamparter E  Blaschke G 《Chirality》1999,11(10):772-780
The enantiomers of the anorectic drug amfepramone [rac-diethylpropion, rac-2-(diethylamino)-1-phenyl-1-propanone; rac-DEP] were separated in the preparative scale by crystallization. With enantiopure di-O-benzoyltartaric acid as salt-forming chiral selector, diastereoisomeric salts of DEP enantiomers with a final purity of more than 97.5% were obtained. Analytical liquid chromatographic and electrophoretic methods for the control of the enantiomeric purity and the stoichiometry of the salts were developed. The enantioseparation of rac-DEP by capillary electrophoresis (CE) using hydroxypropyl-beta-cyclodextrin (HP-beta-CD) as chiral discriminator and phosphate buffer (pH 3.3) as run buffer led to good separations. HPLC methods were developed using polysaccharide chiral stationary phases (CSP). The separation of the two enantiomers and the two main degradation products (1-phenyl-1,2-propanedione and propiophenone), known from solid and liquid pharmaceutical preparations, was attained in one run on the silica-based CSP cellulose tris(3,5-dimethylphenylcarbamate) (Chiralcel OD). The conditions which might affect the enantioselectivity and the quality of the enantiomeric separation were investigated for Chiralcel OD and the related CSP amylose tris(3,5-dimethylphenylcarbamate) (Chiralpak AD). Both CSPs showed very similar chromatographic properties. The separation factors could be influenced significantly by varying the polar organic modifier added to the mobile phase.  相似文献   

17.
The enantiomers of two different derivatives of tert-leucine were separated by continuous chromatography on chiral stationary phases applying the simulated moving bed technique. About 1 kg of racemic N-carbobenzoxy-tert-leucine was resolved on the cellulose-based phase Chiralcel OD using a mixture of heptane/ethanol and 0.1% of trifluoroacetic acid modifier as the mobile phase, while 520 g of the N-Boc-tert-leucine-benzylester was resolved on the amylose-based phase Chiralpak AD with a mixture of heptane/2-propanol as the mobile phase. In both instances the corresponding enantiomers were obtained in high yield and high optical purity.  相似文献   

18.
Lin K  Xu C  Zhou S  Liu W  Gan J 《Chirality》2007,19(3):171-178
Chiral high-performance liquid chromatography (HPLC) is one of the most powerful tools to prepare enantiopure standards of chiral compounds. In this study, the enantiomeric separation of imidazolinone herbicides, i.e., imazethapyr, imazapyr, and imazaquin, was investigated using chiral HPLC. The enantioselectivity of Chiralpak AS, Chiralpak AD, Chiralcel OD, and Chiralcel OJ columns for the three analytes was compared under similar chromatographic conditions. Chiralcel OJ column showed the best chiral resolving capacity among the test columns. The resolved enantiomers were distinguished by their signs of circular dichroism detected at 275 nm and their structures confirmed with LC-mass spectrometric analysis. Factors affecting the chiral separation of imidazolinones on Chiralcel OJ column were characterized. Ethanol acted as a better polar modifier than the other alcohols including 2-propanol, 1-butanol, and 1-pentanol. Although the acidic modifier in the mobile phase did not influence chiral recognition, it was necessary for reducing the retention time of enantiomers and suppressing their peak tailing. Thermodynamic evaluation suggests that enantiomeric separation of imidazolinones on Chiralcel OJ column is an enthalpy-driven process from 10 to 40 degrees C. This study also shows that small amounts of pure enantiomers of imidazolinones may be obtained by using the analytical chiral HPLC approach.  相似文献   

19.
To obtain milligram amounts of the enantiomers of benzoxazolinone derivatives to be tested for binding to adrenergic sites, analytical HPLC methods using derivatized amylose chiral stationary phases were developed for the direct enantioseparation of benzoxazolinone aminoalcohols and their aminoketone precursors, derivatives with one or two chirals centers. The separations were made using normal phase methodology with a mobile phase of n‐hexane‐alcohol (ethanol, 1‐propanol, or 2‐propanol) in various proportions, and silica‐based amylose (tris‐3, 5‐dimethylphenylcarbamate) Chiralpak AD and (tris‐(S)‐1‐phenylethylcarbamate) Chiralpak AS columns. The effects of concentration of various aliphatic alcohols in the mobile phase were studied. The best separation was achieved on Chiralpak AS, so preparative HPLC was set up with this chiral stationary phase using a mobile phase consisting of n‐hexane‐alcohol using isocratic conditions and multiple repetitive injections. Physicochemicals properties of enantiomers were reported The effect of structural features of the solutes on discrimination between the enantiomers was examined. Limit of detection (LD) and limit of quantification (LQ) were determined using both ultra‐violet (UV) and evaporative light‐scattering detection (ELSD). Chirality, 2009. © 2008 Wiley‐Liss, Inc.  相似文献   

20.
The enantioselectivity and enantiomeric separation of five racemic piperidine-2,6-dione compounds, on the cellulose tris(3,5-dimethylphenyl carbamate) chiral stationary phase Chiralcel OD-CSP were investigated under the same chromatographic conditions. This class of drugs includes glutethimide, aminoglutethimide, cyclohexylaminoglutethimide, pyridoglutethimide, and phenglutarimide. The results revealed that chiral recognition and the binding sites of these drugs on the Chiralcel OD column are similar, regardless of the absolute configuration of the individual enantiomers. A possible chiral recognition mechanism(s) for this class of drugs and the CSP is presented. © 1994 Wiley-Liss, Inc.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号