首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 250 毫秒
1.
Marine ecosystems with complex trophic structure and dominated by animals started to build up in the Early Cambrian. Fossil evidence from exceptional fossil localities such as the Chengjiang Lagerstätte from South China indicate a high level of biological interactivity (e.g. prey–predator relationships) and the colonization of a wide range of pelagic and benthic niches by predators, scavengers, and detritus and suspension feeders. Swimmers are numerous, but there is no evidence for the extensive occupation of the water column by the Early Cambrian. On the contrary, animal life may have concentrated in hyperbenthic environments, close to the sea bottom. This would have been the initial step towards the colonization of the whole pelagic realm and the building-up of pelagic food chains. A chain of biotic innovations and events seems to have catalyzed both the animal diversification and the build-up of a completely new type of ecosytem, with: (1) the achievement of complex nervous systems, visual organs and motor functions; (2) the introduction of new selective pressure (e.g. predation and feed-back effects); and (3) the colonization of new niches. The role of environmental factors (e.g. oxygen, water chemistry, climate) may have been important in the early stages of metazoan evolution, but was probably negligible in the ecological turnover itself that takes place in the Early Cambrian. Close resemblances between the trophic structure of present-day ecosystems and that of Cambrian ones are confirmed by fossil data and recent mathematical models. This unprecedented increase of interdependence between animal species and trophic levels probably increased the general stability of marine ecosystems, but made them for the first time in their history, highly vulnerable to environmental perturbations. This will largely influence the post-Cambrian evolution of the marine world.  相似文献   

2.
The symmetry of Earths life cover (Geomerida) was described generally by L.A. Zenkevich (1948). It coincides with the symmetry of geographic cover. Its symmetry elements are equatorial plane and three meridonal planes corresponded to oceans and continents. The hypsographic curve with point of inflection (symmetry element) on 3 km depth line should be added to these elements. The plankton and benthos communities as well as fauna of taxons are distributed symmetrically according these symmetry elements. Zenkevich model was successfully extrapolated to plankton by K.V. Beklemishev (1967, 1969) and to abyssal benthos by Sokolova M.N. (1986). The plankton communities inhabiting symmetrically located macrocirculations are considered as homologous. The character of circulation determines the trophic structure of plankton and benthos. In the case of high productivity of plankton, benthic grazing animals feed on sedimented particles have bilateral symmetric mouthpart. Otherwise they have to acquire food from water column and use cyclomeric mouthpart. Thus, the symmetry of macrocirculations determines the symmetry distribution of benthic animals with two major symmetries of mouthparts. The peculiarities of organisms' symmetry are discussed in the context of Pierre Curie principle and the ideas of K.V. Beklemishev concerning evolution of morphological axes.  相似文献   

3.
To examine if changes in species composition of a plankton community in the past due to anthropogenic activities can be clarified in lakes without any monitoring data, we analyzed genetically ephippial carapaces of Daphnia with plankton remains stored in the bottom sediments of Lake Hataya Ohunma in Japan. In the lake, abundance of most plankton remains in the sediments was limited and TP flux was at low levels (2–4 mg/m2/y) before 1970. However TP flux increased two-fold during the period from 1980s to 1990s. In parallel with this increase, abundance of most plankton remains increased although abundance of benthic testate amoebae’s remains decreased, indicating that the lake trophic condition had changed from oligo- to mesotrophic for the past 60 years. According to cluster analysis, the stratigraphic sediments were divided into two periods with different features of the phytoplankton composition. Chronological comparison with events in the watershed suggested that eutrophication occurred because of an increase in visitors to the watershed and deposition of atmospheric dust. In this lake more than 50% of resting eggs produced by Daphnia over the past 60 years hatched. However, genetic analysis of the ephippial carapaces (remains) showed that the Daphnia population was originally composed of D. dentifera but that D. galeata, or its hybrid with D. dentifera, invaded and increased the population density when the lake was eutrophied. Subsequently, large D. pulex established populations in the 1980s when largemouth bass were anonymously introduced. These results indicated that the Lake Hataya Ohunma plankton community underwent significant changes despite the fact that there were no notable changes in land cover or land use in the watershed. Since increases in atmospheric deposition and release of fish have occurred in many Japanese lakes, the changes in the plankton community described here may be widespread in these lakes.  相似文献   

4.
Summary

In this review of terrestrialization by plants and animals in the early Phanerozoic, the classical idea of a major mid-Palaeozoic event is discarded in favour of gradual colonization over a long time period. Four phases of colonization of the land by plants are recognized but their limits are often difficult to define. The first, of microbial mats comprising prokaryotes and later photosynthesizing protists (algae) but with no direct fossil evidence, extends from the Precambrian and may persist in environments unsuitable for colonization by higher plants and animals today. The second, based on microfossils (spores and cuticles) possibly from plants of bryophyte aspect (if not affinity) started in the Ordovician (c. 460 Ma ago) and ended in the Lower Devonian, but was overlapped by the third phase beginning early in the Silurian (c. 430 Ma). This consisted of small plants of axial organization with terminal sporangia probably allied to the tracheophytes. The advent of taller vascular plants of varied organization around the Silurian — Devonian boundary (c. 420–400 Ma) signalled the final pioneering phase — that of major adaptative radiations on land, culminating in the appearance of extant groups, in changes in reproductive strategy and in the development of complex vegetation structure. The animal record is sparser than that of the plants, but suggests an early land fauna in the mid-Palaeozoic which differed from later terrestrial assemblages in lacking herbivores, with the first direct fossil evidence for land animals in the late Silurian.  相似文献   

5.
Jan Bergström 《Ichnos》2013,20(1):3-13
In this attempt to synthesize present knowledge into a coherent story, the Cambrian explosion is interpreted to represent a true adaptive radiation, an event similar to Phanerozoic radiation events in principle but unique in its possibilities. A model of bilaterian evolution helps explain how this particular event involved the sudden initiation of major coelomate phyla. In many of these groups, preservable skeletons are part of the basic body plan. Biochemical‐sequence analyses indicate that acoelomates and pseudocoelomates branched off long before the coelomate radiation. The great differences between Vendian and Cambrian ichnofaunas, therefore, may be the result of a major shift in composition from Vendian acoelomate‐pseudocoelomate‐procoelomate faunas to Phanerozoic faunas dominated by new coelomate groups.  相似文献   

6.
The fossil record documents the morphological and anatomical changes that have occurred over more than 400 million years of land plant evolution. Many of these changes can be interpreted, and even predicted, on the basis of standard engineering principles pertaining to mechanical stability, hydraulics, and the rescaling of form to maintain a constant level of performance or function. Theoretically based hypotheses, constructed using modern computer technology, can be compared with the major trends seen in the evolution of land plants and so provide insights into the factors motivating morphological and anatomical changes during the Phanerozoic.  相似文献   

7.
The recovery of benthic macroinvertebrates after disturbance from stream rehabilitation was studied in the River Livojoki, northern Finland. The stream that had been channelized for log transport was rehabilitated on 1 July 1992 by digging holes and inserting boulders. We measured habitat characteristics and sampled benthic animals before and after rehabilitation, including an unrehabilitated control site. The immediate effect of rehabilitation was a slight decrease in the abundances of benthic insects. Recolonization occurred rapidly, within 10 days. Disturbance of the rehabilitation did not have a detectable effect on the macroinvertebrate community. Most species-level changes and community patterns reflected seasonal life history events. Timing of such rehabilitation work can be critical for the recovery rate, which depends on the colonization abilities of the species present after disturbance. We suggest that many disturbances (including minor floods and moderate rehabilitation procedures) may have only small, short-term effects on benthic communities. We emphasize the importance of considering seasonality in studies of disturbance in streams.  相似文献   

8.
Based on growth patterns, regeneration capabilities and genetic make up, benthic macroalgae include three groups of species. Similar to land plants, they include clonal and aclonal species, and, similar to colonial aquatic animals, seaweeds also include coalescing species, that have the capacity to fuse forming composite (chimeric) entities. Since the awareness of the differences between these three kinds of seaweeds is rather recent, most ecological studies have not discriminated among them. However, ecological models based on one kind of seaweeds will not necessarily apply to all kinds of seaweeds. This study reviews ecological responses of algae at the individual and community levels, and describes similarities and differences among both the three algal groups and with parallel groups in land plants and chimeric marine animals. The ecological responses reviewed are plant sizes and shapes; patterns of resource acquisition; algal life phases, reproduction and dispersal; genetic variability, intraspecific and interspecific competition and herbivory. Analysis of these responses supports the idea in distinguishing among the above three algal group, reveals the need for numerous additional ecological studies and advices on incorporating concepts from the biology of chimeric aquatic animals and from clonal theory of land plants into the study of benthic macroalgae.  相似文献   

9.
The earliest evolution of the animals remains a taxing biological problem, as all extant clades are highly derived and the fossil record is not usually considered to be helpful. The rise of the bilaterian animals recorded in the fossil record, commonly known as the ‘Cambrian explosion’, is one of the most significant moments in evolutionary history, and was an event that transformed first marine and then terrestrial environments. We review the phylogeny of early animals and other opisthokonts, and the affinities of the earliest large complex fossils, the so‐called ‘Ediacaran’ taxa. We conclude, based on a variety of lines of evidence, that their affinities most likely lie in various stem groups to large metazoan groupings; a new grouping, the Apoikozoa, is erected to encompass Metazoa and Choanoflagellata. The earliest reasonable fossil evidence for total‐group bilaterians comes from undisputed complex trace fossils that are younger than about 560 Ma, and these diversify greatly as the Ediacaran–Cambrian boundary is crossed a few million years later. It is generally considered that as the bilaterians diversified after this time, their burrowing behaviour destroyed the cyanobacterial mat‐dominated substrates that the enigmatic Ediacaran taxa were associated with, the so‐called ‘Cambrian substrate revolution’, leading to the loss of almost all Ediacara‐aspect diversity in the Cambrian. Why, though, did the energetically expensive and functionally complex burrowing mode of life so typical of later bilaterians arise? Here we propose a much more positive relationship between late‐Ediacaran ecologies and the rise of the bilaterians, with the largely static Ediacaran taxa acting as points of concentration of organic matter both above and below the sediment surface. The breaking of the uniformity of organic carbon availability would have signalled a decisive shift away from the essentially static and monotonous earlier Ediacaran world into the dynamic and burrowing world of the Cambrian. The Ediacaran biota thus played an enabling role in bilaterian evolution similar to that proposed for the Savannah environment for human evolution and bipedality. Rather than being obliterated by the rise of the bilaterians, the subtle remnants of Ediacara‐style taxa within the Cambrian suggest that they remained significant components of Phanerozoic communities, even though at some point their enabling role for bilaterian evolution was presumably taken over by bilaterians or other metazoans. Bilaterian evolution was thus an essentially benthic event that only later impacted the planktonic environment and the style of organic export to the sea floor.  相似文献   

10.
SUMMARY.
  • 1 Interspecific differences in diatom abundances in stream drift (plankton), immigration, and natural benthic assemblages were compared to assess the importance of emigration and immigration in benthic diatom community dynamics. Water samples were collected throughout a 24-h period to measure diel changes in diatom drift abundances and to estimate benthic diatom emigration rates. Immigration was assessed with 24-h colonization of bare tiles.
  • 2 Dissimilarity in species composition of drift, immigration, and natural substrate assemblages indicated differential emigration and immigration among diatom species.
  • 3 A mathematical model indicated that reproduction by diatoms in the plankton could not account for diel drift peaks and that diel variation in drift was an informative measure of benthic diatom emigration.
  • 4 Emigration and immigration of some species constituted substantial proportions of diatom abundances on natural substrata. We conclude that emigration into the drift and immigration onto substrata can be important processes that regulate benthic diatom species composition and standing crop in streams.
  相似文献   

11.
Changes of community structure in response to competition usually take place on timescales that are much too short to be visible in the geological record. Here we report the notable exception of a benthic marine community in the wake of the end‐Permian mass extinction, which is associated with the microbial limestone facies of the earliest Triassic of South China. The newly reported fauna is well preserved and extraordinarily rich (30 benthic macroinvertebrate species, including the new species Astartella? stefaniae (Bivalvia) and Eucochlis obliquecostata (Gastropoda)) and stems from an environmentally stable setting providing favourable conditions for benthic organisms. Whereas changes in the taxonomic composition are negligible over the observed time interval of 10–100 ka, three ecological stages are identified, in which relative abundances of initially rare species continuously increased at the cost of previously dominant species. Concomitant with the changes of dominant species is an increase in faunal evenness and heterogeneity. In the absence of both environmental and taxonomic changes, we attribute this pattern to the long‐term effects of interspecific competition, which acted at an unusually slow pace because the number of competing species and potential immigrants was dramatically reduced by the end‐Permian mass extinction. We suggest that these non‐actualistic conditions led to decreased rates of niche differentiation and hence to the delayed rediversification of benthos that characterizes the aftermath of the greatest Phanerozoic mass extinction event. A hyperbolic diversification model is proposed, which accounts for the positive relationship between the intensity of interspecific competition and the rate of niche differentiation and resolves the conundrum of delayed rediversification at a time when niche space was largely vacated.  相似文献   

12.
Microbial mats of coexisting bacteria and archaea date back to the early Archaean: many of the major steps in early evolution probably took place within them. The earliest mats may have formed as biofilms of cooperative chemolithotrophs in hyperthermophile settings, with microbial exploitation of diversifying niches. Anoxygenic photosynthesis using bacteriochlorophyll could have allowed mats, including green gliding bacteria, to colonize anaerobic shallow-water mesothermophile habitats. Exploitation of the Calvin–Benson cycle by purple bacteria allowed diversification of microbial mats, with some organisms in more aerobic habitats, while green sulphur bacteria specialized in anaerobic niches. Cyanobacterial evolution led to more complex mats and plankton, allowing widespread colonization of the globe and the creation of further aerobic habitat. Microbial mat structure may reflect this evolutionary development in broad terms, with anaerobic lower levels occupied by archaeal and bacterial respirers, fermenters and green bacteria, while the higher levels contain aerobic purple bacteria and are dominated by cyanobacteria. A possible origin of eukaryotes is from a fusion of symbiotic partners living across a redox boundary in a mat. The geological record of Archaean mats may be present as isotopic fingerprints: with the presence of cyanobacteria, mats may have had a nearly modern structure as early as 3.5 Ga ago (1 Ga = 109 years).  相似文献   

13.
The ecological scenario of the evolution of main branches of Neodermata is described. The first neodermateans (= promonogeneans) were parasites of the gill lamellae of Paleozoic jawless vertebrates, which were microphagous suspension-feeding animals. The main apomorphic characters of the primary neodermateans are neodermis, cercomer (posterior hooked attachment organ) and swimming infective larva. All subsequent evolution of Neodermata was related with their acquisition new niches in hosts, which were intensively diverging in that time adapting to new food types and conquering new ecological niches. The acquisition of new microhabitats was accompanied by the development of morphological diversity in Neodermata especially in a structure of attachment and genital organs. Trematoda, Cestoda and Polyopisthocotylea comprise specialized evolutionary lineages and Monopisthocotylea is a basal taxon. Polyopisthocotylea is specialized to the blood feeding on fish gills. The common ancestors of the Trematoda and Cestoda inhabited walls of gills and pharyngeal cavities, from where they penetrated the digestive tract. The aspidogastridean multiloculate hold fast appears to be a highly specialized attachment organ of the monogenean ancestor, which inhabited muscular pharyngeal walls of Paleozoic vertebrates. The loss of cercomer hooks probably took place when mollusk-hosts have been involved in the aspidogastridean life cycle. The extinction of many chondrichthiean groups and progress of small plankton fishes (Teleostei) has led to the appearance Digenea. New vertebrate hosts needed a new infestation type and the cercaria appeared. Parthenogenesis has been developed in stages living in mollusks to counterbalance the loss of individuals at two transmission stages in the digenean cycle; this was resulted in a strong specificity to mollusk-host. Evolutionary tendencies of Trematoda and Cestoda show noticeable similarities.  相似文献   

14.
为研究猕猴桃节肢动物群落重建过程和主要类群生态位移,本试验系统调查野生猕猴桃和人工栽植不同树龄(3年、9年、14年)猕猴桃园节肢动物群落,测定群落特征指标和主要类群的时空生态位。结果表明,群落包含3纲15目74科,约90种。不同桃园节肢动物群落的主要类群不同,各类群占群落总数的比例差异显著,野生猕猴桃园群落中各类群分布较均匀,栽植桃园群落中害虫比例较大。野生猕猴桃园和栽植猕猴桃园之间,群落的多样性指数、均匀度和优势度差异均极显著,群落稳定性表现为野生>9年>14年>3年。各类群的时空二维生态位也会随着栽植时间增长发生变化:蜘蛛和蝇类的生态位在不同树龄的猕猴桃园中都保持在较高水平;人工栽植初期,山楂叶螨和叶蝉占据的时空生态位较宽,成为优势类群,小薪甲与山楂叶螨生态位重叠较大,竞争激烈;随后,小薪甲和瘿蚊的时空二维生态位逐渐增大,到14年桃园中已经取代了山楂叶螨和叶蝉,成为主要害虫。总之,人工干扰的节肢动物群落重建是一个次级演替过程,与自然生态系统群落明显不同。  相似文献   

15.
Between the late Oligocene and the early Miocene, climatic changes have shattered the faunal and floral communities and drove the apparition of new ecological niches. Grassland biomes began to supplant forestlands, thus favouring a large-scale ecosystem turnover. The independent adaptive radiations of several mammal lineages through the evolution of key innovations are classic examples of these changes. However, little is known concerning the evolutionary history of other herbivorous groups in relation with this modified environment. It is especially the case in phytophagous insect communities, which have been rarely studied in this context despite their ecological importance. Here, we investigate the phylogenetic and evolutionary patterns of grass-specialist moths from the species-rich tribe Apameini (Lepidoptera, Noctuidae). The molecular dating analyses carried out over the corresponding phylogenetic framework reveal an origin around 29 million years ago for the Apameini. Ancestral state reconstructions indicate (i) a potential Palaearctic origin of the tribe Apameini associated with a major dispersal event in Afrotropics for the subtribe Sesamiina; (ii) a recent colonization from Palaearctic of the New World and Oriental regions by several independent lineages; and (iii) an ancestral association of the tribe Apameini over grasses (Poaceae). Diversification analyses indicate that diversification rates have not remained constant during the evolution of the group, as underlined by a significant shift in diversification rates during the early Miocene. Interestingly, this age estimate is congruent with the development of grasslands at this time. Rather than clade ages, variations in diversification rates among genera better explain the current differences in species diversity. Our results underpin a potential adaptive radiation of these phytophagous moths with the family Poaceae in relation with the major environmental shifts that have occurred in the Miocene.  相似文献   

16.
The origin and differentiation of major clades is often assumed to have occurred in tandem with the 'explosion' of fossil evidence of diverse morphologies ('disparity') at the base of the Cambrian. Evidence is presented that this was not the case. Biogeographical and morphological differentiation among the earliest trilobites reveals incompleteness in the known early Cambrian record; similar evidence can be accrued for other major groups. Phylogenetic analysis proves the likelihood of 'ghost' lineages extending into the Precambrian. The important events in the generation of clades were earlier than the Cambrian 'explosion', at which time the groups become manifest in the fossil record. It is likely that the important phylogenetic changes happened in animals of small size; sister taxa of major groups are shown to be small animals. Decoupling cladogenesis from the Cambrian 'explosion' removes the necessity of invoking unknown evolutionary mechanisms at the base of the Phanerozoic. Genes controlling development may have played a role in generating new morphologies, through heterochrony for example, in the early differentiation of metazoan body plans.  相似文献   

17.
Studies of the origin of evolutionary novelties (novel traits, feeding modes, behaviours, ecological niches, etc.) have considered a number of taxa experimenting with new body plans, allowing them to occupy new habitats and exploit new trophic resources. In the marine realm, colonization of pelagic environments by marine fishes occurred recurrently through time. Stingrays (Myliobatiformes) are a diverse clade of batoid fishes commonly known to possess venomous tail stings. Current hypotheses suggest that stingrays experimented with a transition from a benthic to a pelagic/benthopelagic habitat coupled with a transition from a non-durophagous diet to extreme durophagy. However, there is no study detailing macroevolutionary patterns to understand how and when habitat shift and feeding specialization arose along their evolutionary history. A new exquisitely preserved fossil stingray from the Eocene Konservat-Lagerstätte of Bolca (Italy) exhibits a unique mosaic of plesiomorphic features of the rajobenthic ecomorph, and derived traits of aquilopelagic taxa, that helps to clarify the evolutionary origin of durophagy and pelagic lifestyle in stingrays. A scenario of early evolution of the aquilopelagic ecomorph is proposed based on new data, and the possible adaptive meaning of the observed evolutionary changes is discussed. The body plan of †Dasyomyliobatis thomyorkei gen. et sp. nov. is intermediate between the rajobenthic and more derived aquilopelagic stingrays, supporting its stem phylogenetic position and the hypothesis that the aquilopelagic body plan arose in association with the evolution of durophagy and pelagic lifestyle from a benthic, soft-prey feeder ancestor.  相似文献   

18.
The purpose of this study was to examine the colonization and succession of benthic macroinvertebrates in shallow areas (<7 m) of Lake Anna, a new mainstream impoundment in the southeastern U.S.A. Benthic macroinvertebrates were sampled for the first three years after filling by means of artificial substrates placed on the bottom and retrieved with SCUBA. Lake Anna was well colonized by benthic macroinvertebrates during the summer season immediately after impoundment. The total density of organisms increased in each of the first three years. Major changes in the fauna occurred between the first and second years, but the changes between the second and third years were more subtle. The fauna could be divided into two distinct groups based upon the time when the organisms were most consistently abundant. The first colonizers appeared to be dependent upon the components of the former terrestrial ecosystem for food and habitat. As autochthonous factors began to regulate succession, diversity increased and the dominant species shifted to an assemblage of second colonizers. These factors included: (1) decomposition of terrestrial vegetation and detritus leaving bare substrate, (2) sedimentation, (3) improved food quality of the organic matter in the sediment because of ingestion and egestion by the organisms themselves, (4) increased plankton populations, and (5) appearance of macrophytes. As the second colonizers became firmly established in the third year, distinct patterns of spatial distribution began to appear among species with similar niches.  相似文献   

19.
The Devonian Period was characterized by major changes in both the terrestrial biosphere, e.g. the evolution of trees and seed plants and the appearance of multi-storied forests, and in the marine biosphere, e.g. an extended biotic crisis that decimated tropical marine benthos, especially the stromatoporoid-tabulate coral reef community. Teleconnections between these terrestrial and marine events are poorly understood, but a key may lie in the role of soils as a geochemical interface between the lithosphere and atmosphere/hydrosphere, and the role of land plants in mediating weathering processes at this interface. The effectiveness of terrestrial floras in weathering was significantly enhanced as a consequence of increases in the size and geographic extent of vascular land plants during the Devonian. In this regard, the most important palaeobotanical innovations were (1) arborescence (tree stature), which increased maximum depths of root penetration and rhizoturbation, and (2) the seed habit, which freed land plants from reproductive dependence on moist lowland habitats and allowed colonization of drier upland and primary successional areas. These developments resulted in a transient intensification of pedogenesis (soil formation) and to large increases in the thickness and areal extent of soils. Enhanced chemical weathering may have led to increased riverine nutrient fluxes that promoted development of eutrophic conditions in epicontinental seaways, resulting in algal blooms, widespread bottomwater anoxia, and high sedimentary organic carbon fluxes. Long-term effects included drawdown of atmospheric pCO2 and global cooling, leading to a brief Late Devonian glaciation, which set the stage for icehouse conditions during the Permo-Carboniferous. This model provides a framework for understanding links between early land plant evolution and coeval marine anoxic and biotic events, but further testing of Devonian terrestrial-marine teleconnections is needed.  相似文献   

20.
A significant proportion of the global diversity of flowering plants has evolved in recent geological time, probably through adaptive radiation into new niches. However, rapid evolution is at odds with recent research which has suggested that plant ecological traits, including the beta- (or habitat) niche, evolve only slowly. We have quantified traits that determine within-habitat alpha diversity (alpha niches) in two communities in which species segregate on hydrological gradients. Molecular phylogenetic analysis of these data shows practically no evidence of a correlation between the ecological and evolutionary distances separating species, indicating that hydrological alpha niches are evolutionarily labile. We propose that contrasting patterns of evolutionary conservatism for alpha- and beta-niches is a general phenomenon necessitated by the hierarchical filtering of species during community assembly. This determines that species must have similar beta niches in order to occupy the same habitat, but different alpha niches in order to coexist.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号