首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Modulation of Hydra attenuata rhythmic activity. Photic stimulation.   总被引:1,自引:0,他引:1  
We investigated in Hydra attenuata the possibility of altering more or less permanently and in different environmental conditions, the frequency of Contraction Pulse Trains (CPT's) associated with the rhythmic spontaneous contraction activity, by repetitive light stimuli of variable duration, frequency and amplitude. The CPT's activity of various pieces of Hydra has been also investigated in indisturbed conditions and under stimulation. The following observations have been performed. 1. A transient effect, consisting of an increase or a decrease of CPT's frequency, occurs respectively after an abrupt decrease or increase of the light level. 2. If Hydra is stimulated by repetitive light pulses of 0.5-10 sec duration, at a frequency different from the CPT's average one, the CPT's frequency modifies; if the stimulation frequency is included in a range not too much up or below that of CPT's the new CPT's frequency equals exactly that of stimulation; close to this range the CPT's frequency is a multiple or submultiple of that of stimulation. 3. No habituation to such repetitive stimulation was found. 4. The phase relation between CPT's at the new frequency and light stimuli is a function of the difference between CPT's and stimulation frequencies. 5. Stimulation with repetition of light and darkness periods of some minutes duration induces activity only or mainly during darkness. 6. Modification of CPT's frequency by means of repetitive light stimulation [of the type mentioned either in 2) or 5)] has been observed also with hypostomal preparations. 7. With cessation of the light stimulation, the new CPT's frequency of the whole animal lasts in darkness for a time (10-85 min) that is about 5-10 times longer than that necessary to obtain CPT's syncronization with stimulation. 8. The influence of the light intensity level on transient CPT's frequency variation (see 1), CPT's inhibition and stimulation, promptness of entrainment, range of entrainability, phase relation between entrained CPT's and stimuli, retention time of entrained rhythm has been examined, together with the influence of the reversal of polarity of light transitions on CPT's inhibition and entrainment.  相似文献   

2.
Here we analyse the previous results concerning the effects of photic and electric stimulation on the contraction-relaxation behaviour of Hydra, the existence of a potential difference between the two extremities of the animal, its rhythmic variation in time, its modulation by luminous environmental changes as well as the contraction pulse variations dependent on the luminous stimulation itself and the complex overt behaviour of an electrically stimulated animal. A model of the mechanism responsible for the rhythmic activity, which takes into account the above results as well as the already known anatomical and physiological data, is given. This model is based on the mutual inhibitory interaction of the two pacemaker systems responsible for the contraction and relaxation outputs, on the post inhibitory rebound after the received inhibition, which rebound constitutes the activity phase of each of them, and on the different weight of the activity exerted by each of them.  相似文献   

3.
gamma-Glutamyltransferase activity was studied in extracts of the cnidarian Hydra attenuata. The binding of gamma-glutamyl peptide analogues to the enzyme was studied by observing their effects on heat denaturation and their inhibition of p-nitroaniline release from gamma-glutamyl p-nitroanilide. Neither position-1 analogues, in which the gamma-glutamyl moiety was changed to a beta-aspartyl (beta-Asp-Abu-Gly) or an alpha-glutamyl (Glu-Abu-Gly) linkage, nor glutamate protected the enzyme against inactivation at 58 degrees C. GSH (reduced glutathione), gamma-Glu-Abu-Gly and gamma-Glu-Met on the other hand did prevent heat denaturation. GSH and analogues of GSH were competitive inhibitors of p-nitroaniline release, but those analogues in which glycine was replaced by 2-aminoisobutyrate, phenylalanine, leucine or tyrosine had Ki values that were approximately five times those of analogues with the cysteine residue replaced.  相似文献   

4.
5.
6.
7.
8.
9.
Light exposure during the early and late subjective night generally phase delays and advances circadian rhythms, respectively. However, this generality was recently questioned in a photic entrainment study in Octodon degus. Because degus can invert their activity phase preference from diurnal to nocturnal as a function of activity level, assessment of phase preference is critical for computations of phase reference [circadian time (CT) 0] toward the development of a photic phase response curve. After determining activity phase preference in a 24-h light-dark cycle (LD 12:12), degus were released in constant darkness. In this study, diurnal (n = 5) and nocturnal (n = 7) degus were randomly subjected to 1-h light pulses (30-35 lx) at many circadian phases (CT 1-6: n = 7; CT 7-12: n = 8; CT 13-18: n = 8; and CT 19-24: n = 7). The circadian phase of body temperature (Tb) onset was defined as CT 12 in nocturnal animals. In diurnal animals, CT 0 was determined as Tb onset + 1 h. Light phase delayed and advanced circadian rhythms when delivered during the early (CT 13-16) and late (CT 20-23) subjective night, respectively. No significant phase shifts were observed during the middle of the subjective day (CT 3-10). Thus, regardless of activity phase preference, photic entrainment of the circadian pacemaker in Octodon degus is similar to most other diurnal and nocturnal species, suggesting that entrainment mechanisms do not determine overt diurnal and nocturnal behavior.  相似文献   

10.
The precision with which an almost uniform sheet of hydra cells develops into a complete animal was measured quantitatively. Pieces of tissue of varying dimensions were cut from the body column of an adult hydra and allowed to regenerate. The regenerated animals were assayed for number of heads (hypostomes plus tentacle rings), head attempts (body tentacles), and basal discs. To ascertain whether the head and body were reformed in normal proportions, the average number of epithelial cells in the heads and bodies was measured. Pieces of tissue, from 12 to 120 an adult in size, formed heads that were a constant fraction of the regenerate. Thus, over a 10-fold size range, a proportioning mechanism was operating to divide the tissue into head area and body area quite precisely, but appeared to reach limits at the extremes of the range. However, the regenerates were not all normal miniatures with one hypostome and one basal disc. As the width-length ratio of the cut piece was increased beyond the circumference-length ratio of the intact body column, the incidence of extra hypostomes in the “head” and body tentacles and extra basal discs in the “body” rose dramatically. A proportioning mechanism based on the Gierer-Meinhardt model for pattern formation is presented to explain the results.  相似文献   

11.
Summary Living dissociated cells of hydra were exposed to fluorescein- and ferritin-conjugated concanavalin A (con A) and observed by light and electron microscopy. Fluorescence microscopy indicated that the isolated cells bound con A differentially; epidermal battery cells showed the greatest binding, whereas small cells belonging to the interstitial cell class displayed the lowest levels of binding. Mature nematocytes had strong localized con A binding at the opercular region. Electron microscopy permitted accurate identification of interstitial cells, early nematoblasts, and nerve cells. The use of ferritin-labeled con A allowed quantitative assessment of lectin binding on these cells. There were significantly fewer con A-binding sites on interstitial cells as compared to nematoblasts and nerve cells, and the amount of con A binding appeared to increase with the maturation of nematocysts from nematoblasts. The findings are discussed in relation to a likely role of cell surface glycoconjugates in the development of positional signals and intercellular junctions that govern final positioning of nematocytes and nerves in hydra.  相似文献   

12.
13.
Ultrastructural and light microscopic observations on the organization of thick and thin regions of hydra's tentacles, made on serial sections and on whole fixed, plastic-embedded tentacles, reveal the existence of two levels of anatomical order in the tentacle ectoderm: (1) The battery-cell complex (BCC), composed of a single epitheliomuscular cell (EMC) and its content of enclosed nematocytes and neurons; and (2) the battery cell complex ring (BCC ring), an arrangement of 4 or more BCCs into larger units organized as rings around the circumference of the tentacle. All EMCs of the distal tentacle appear to contain batteries of nematocytes, and are, therefore, called “battery cells.” Apart from battery cell complexes and migrating nematocytes, there are no other cell types in the tentacle ectoderm. Battery cells are composed of three distinct regions: the cell body, peripheral attenuated extensions and myonemes. Thick tentacle bands are composed of cell bodies, whereas thin bands are made up of attenuated extensions. Myonemes contribute to both thick and thin regions. It was confirmed that each battery cell has several myonemes, which appear to interdigitate with myonemes of other more proximal and distal battery cells, but not with battery cells of the same BCC ring. Nematocytes have several basal processes. Some processes insert between myonemes and contact the mesoglea; other processes insert into cuplike extensions of myonemes, and are connected to myonemal cups by desmosomal junctions. These observations are discussed in relation to mechanical and electrical aspects of tentacular contraction and bending.  相似文献   

14.
The automated high-speed analysis and separation of cells on the basis of spectroscopic parameters has been applied to studies of cellular differentiation in two systems. The temporal changes following induction of differentiation by dimethylsulfoxide in the Friend virus-transformed erythroid cells were quantitated by multiparameter analysis leading to the separation of discrete subpopulations. Thus, following induction, cell size decreased as measured by light scattering, the number of H-2 histocompatibility antigen sites decreased as measured by indirect fluorescent antibody binding, the number of lectin-binding sites per cell increased as measured by fluorescein-labeled concanavalin-A and the microviscosity of the hydrocarbon region of the plasma membrane increased as determined by the fluorescence emission anisotropy of the membrane probe 1,6-diphenyl-1,3,5-hexatriene. Cells were separated on the basis of several of these parameters and analyzed for their hemogloglobin content by benzidine staining. Examination of cells separated according to the anisotropy parameter showed that high anisotropy values were correlated with (a) small cell size, (b) positive staining with benzidine and (c) pronounced reactivity with fluorescent antibody to the erythrocyte protein spectrin. Disaggregated cells from Hydra attenuata were selectively stained with the dyes rhodanile blue, 7-(p-methoxybenzylamino)-4-nitrobenz-2-oxa-1,3-diazole and fluorescamine. Distribution analyses and preliminary separations indicated the feasibility of obtaining homogeneous classes of cell types in a viable state. The experiments with emission anisotropy represent the first analyses and separations of single cells on the basis of fluorescence polarization. Many other uses of this technique are anticipated.  相似文献   

15.
D A Fisher  H R Bode 《Gene》1989,84(1):55-64
We have determined the complete nucleotide sequence of an actin-encoding gene from Hydra attenuata as well as partial sequences of cDNA clones from two additional actin-encoding genes. The gene from the genomic clone contains a single intron, and has promoter and polyadenylation signals similar to those found in other species. The hydra genome has a very A + T-rich base composition (71%). This is reflected in the codon usage of the actin-encoding genes, which is strongly biased towards codons having A or T in the third position. The hydra actin-encoding gene family consists of three or more transcribed genes, two of which are very closely related to each other and probably arose by a recent gene duplication. Hydra actin, like other invertebrate actins, is more similar to the non-muscle isotypes of vertebrates than to the vertebrate muscle actins. Hydra actin is more similar to animal actins than to those of plants or fungi, which is consistent with the view that all metazoans arose from a single protist ancestor.  相似文献   

16.
Mechanisms regulating the population size of the multipotent interstitial cell (i-cell) in Hydra attenuata were investigated. Treatment of animals with 3 cycles of a regime of 24 h in 10-2 M hydroxyurea (HU) alternated with 12 h in culture medium selectively killed 95-99% of the i-cells, but had little effect on the epithelial cells. The i-cell population recovered to the normal i-cell:epithelial cell ratio of I:I within 35 days. Continuous labelling experiments with [3H]thymidine indicate that the recovery of the i-cell population is not due to a change in the length of the cell cycle of either the epithelial cells or the interstitial cells. In control animals 60% of the i-cell population undergo division daily while 40% undergo differentiation. Quantification of the cell types of HU-treated animals indicates that a greater fraction of the i-cells were dividing and fewer differentiating into nematocytes during the first 2 weeks of the recovery after HU treatment. Therefore, the mechanism for recovery involves a shift of the 60:40 division:differentiation ratio of i-cells towards a higher fraction in division until the normal population size of the i-cells is regained. This homeostatic mechanism represents one of the influences affecting i-cell differentiation.  相似文献   

17.
Modulation of circuits underlying rhythmic behaviors   总被引:1,自引:0,他引:1  
Summary What have we learned about behavior from neuromodulatory studies of the crustacean stomatogastric system? The emphasis of this paper has been on the analysis of one single class of behaviors (rhythmic) in terms of microcircuitry (synaptic connections between identified neurons). But in the general case, all behaviors result from the generation of spatio-temporal patterns by the central nervous system. How individual nerve cells interact with each other to produce such patterns is of fundamental interest. We know from work on simple networks that it is possible to link the circuitry of the nervous system with behavior in a precise way, and that instead of a large number of dedicated circuits, behaviors can be altered by chemically adjusting the functional properties of the neuronal elements. One circuit can be configured to perform a variety of different behaviors by activating neurons which contain neuromodulatory substances or in response to neurohormones circulating in the hemolymph. At present we know only a few of the ways neuromodulatory neurons are triggered to release their contents onto the neurons making up CPGs.The findings described here raise many questions. What are the parameters which control the distribution of neuromodulatory substances throughout the nervous system? What happens when more than one neuromodulator is present? At the cellular level, what mechanisms are involved in transforming each neuron from one functional state to another, and then how does the entire constellation of changes give rise to a new output? It is important to answer such questions in reduced networks, because there are presently no techniques available to answer them in the more complex networks of the brain. While there is no question that modulatory activity occurs in the brain, whether or not the principles which have been discovered by using simple invertebrate circuits scale up to vertebrate circuits remains an intriguing question.  相似文献   

18.
This light- and electron-microscopic study has investigated the structure, the morphodynamics of discharge, and the impact of the stenotele cyst of Hydra attenuata (Hydrozoa, Cnidaria) on the prey's integument. The triggered capsule, which is ejected from the cell, discharges its tubular content (shaft, stylets and tubule) by a process of evagination. In doing so the three joined stylets punch a hole into the cuticle of the prey through which the long evaginating tubule penetrates into the interior of the target. The behaviour of the tubule is described in detail and the functional significances of the various parts of the capsule are discussed.  相似文献   

19.
Excised pieces of hydra body tissue of varying size and shape regenerate into cylinders with a head and foot at opposite ends. The numbers of cells along the axial and circumferential dimensions were determined before, during, and after regeneration. The main process in shaping the excised tissue into a body column was found to be a rearrangement of the cells. When regenerates of different size were measured, the proportions of the body columns were found to vary, such that the smaller the animal the squatter the body column was. The presence of the head in regenerates was necessary for the formation or maintenance of the cylindrical shape, while the size of the head determined the proportions of the cylinder. The formation of a gradient of adhesivity induced by the developing head is suggested as the basis for the rearrangement of the cells into the cylindrical form.  相似文献   

20.
Obvious inhibition of the hydra regeneration with no subsequent morphological abnormalities, was shown to occur when using alpha-methylthyrosine and 3 Jthyrosine. alpha-Methyldopa induced a slight inhibition but a considerable morphological change: ectopic tentacles, projections, bipolar forms in the gastric fragment. The apical and basal fragments did not suffer. The role of neurotransmitters in the hydra morphogenesis is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号