首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
Maximum activities of manganese-dependent peroxidase (MnP) and lignin peroxidase (LiP) in free cultures of Phanerochaete chrysosporium (ATCC 24725) were 258 U l–1 and 103 U l–1, respectively, in an airlift bioreactor. Immobilisation of the fungus on an inert carrier as well as several design modifications of the bioreactor employed gave MnP activities around 500–600 U l–1 during 9 days' operation. The continuous operation of the latter led to MnP and LiP activities about 140 U l–1 and 100 U l–1, respectively, for two months, without operational problems. Furthermore, the extracellular liquid secreted decolourised the polymeric dye Poly R-478 about 56%.  相似文献   

2.
Raw mixed-dye wastewater from a textile dye-producing plant was partly decolorized by the agaric white-rot fungus, Clitocybula dusenii. The fungus had higher Mn peroxidase (MnP) and laccase activities when grown with dye effluent than in control cultures. The activity of MnP increased commensurately with the proportion of the raw dye wastewater in the medium (control: 20 U l–1; 10% v/v effluent: 67 U l–1; 25% v/v effluent: 130 U l–1; and 33% v/v effluent: 180 U l–1). Maximal decolorization rates were achieved over 20 d at 28 °C using four-fold diluted dye-containing effluent on a 5 d pre-grown mycelium.  相似文献   

3.
A new system to produce lignin peroxidase (LiP) continuously by Phanerochaete chrysosporium is described. A fixed-bed bioreactor with a pulsing device was used as the optimal bioreactor configuration. Addition of veratryl alcohol (1 mM), tryptophan (1 mM), no Mn2+ addition, low glucose addition rate (60–70 mg l–1 h) and an atmosphere of O2 gave maximum LiP activities of 700 U l–1, which are higher than those previously reported.  相似文献   

4.
Fomes sclerodermeus produces manganese peroxidase (MnP) and laccase as part of its ligninolytic system. A Doehlert experimental design was applied in order to find the optimum conditions for MnP and laccase production. The factors studied were Cu2+, Mn2+ and asparagine. The present model and data analysis allowed us not only to define optimal media for production of both laccase and MnP, but also to show the combined effects between the factors. MnP was strongly influenced by Mn2+, which acts as an inducer. Under these conditions Cu2+ negatively affected MnP activity. At 13 days of growth 0.75 U ml–1 were produced in the optimized culture medium supplemented with 1 mM MnSO4 and 4 g l–1 asparagine. The laccase titer under optimized conditions reached maximum values at 16 days of growth: 13.5 U ml–1 in the presence of 0.2 mM CuSO4, 0.4 mM MnSO4 and 6 g l–1 asparagine. Mn2+ promoted production of both enzymes. There were important interactions among the nutrients evaluated, the most significant being those between Cu2+ and asparagine.  相似文献   

5.
Two yeasts, Debaryomyces polymorphus, Candida tropicalis, and two filamentous fungi, Umbelopsis isabellina, Penicillium geastrivorus, could completely decolorize 100 mg Reactive Black 5 (RB 5) l–1 within 16–48 h. Manganese-dependent peroxidase (MnP) activities between 60 and 424 U l–1 were detected in culture supernatants of three of these organisms indicating the color removal by enzymatic biodegradation but with P. geastrivorus there was no ligninolytic enzyme activity in its culture and the decolorization was mainly due to biosorption to mycelium. Extensive decolorization by D. polymorphus (69–94%) and C. tropicalis (30–97%) was obtained with five other azo dyes and one anthraquinone dye. Except for Reactive Brilliant Blue KNR and Reactive Yellow M-3R, the four azo dyes, Reactive Red M-3BE, Procion Scharlach H-E3G, Procion Marine H-EXL and Reactive Brilliant Red K-2BP, induced D. polymorphus to produce MnP (105–587 U l–1). However, MnP activities of 198–329 U l–1 were only detected in the culture of C. tropicalis containing Reactive Red M-3BE and Reactive Brilliant Red K-2BP, respectively.  相似文献   

6.
Phellinus robustus produced both laccase (700–4,000 U l−1) and manganese peroxidase (MnP) (1,000–11,300 U l−1) in fermentation of nine food wastes, whereas Ganoderma adspersum produced only laccase (600–34,000 U l−1). Glucose provided high laccase and MnP activity of P. robustus but repressed enzyme production by G. adspersum. Ammonium sulphate and ammonium tartrate increased the P. robustus laccase yield (3-fold), whereas the accumulation of MnP was not enhanced by additional nitrogen.  相似文献   

7.
Manganese peroxidase (MnP) and lignin peroxidase (LiP) were produced by growing a white-rot fungusBjerkandera adusta statically, on a wood meal/wheat bran culture in flasks. MnP and LiP reached their maximum activity after 6 and 19 days of inoculation, respectively. Both MnP and LiP are thought to be important enzymes in lignin biodegradation byB. adusta. Ion exchange chromatography showed thatB. adusta produced a single LiP and a single MnP enzyme in wood meal/wheat bran culture. These enzymes were separated and characterized. The molecular weight of MnP was 46,500 with a pl of 3.9. The molecular weight of LiP was estimated to be 47,000 with a pl of 3.5. Spectral analysis demonstrated that both enzymes are heme proteins. Production of these enzymes was also achieved using a rotarysolid culture fermenter. MnP, LiP and veratryl alcohol oxidase were produced byB. adusta in the fermenter.  相似文献   

8.
Decolorization of molasses wastewater (MWW) from an ethanolic fermentation plant by Phanerochaete chrysosporium was studied. By diluting MWW properly (10%v/v) and incubating it with an appropriate concentration of the spores (2.5 × 106/ml), extensive decolorization occurred (75%) on day 5 of the incubation. The colour removal ability was found to be correlated to the activity of ligninolytic enzyme system: lignin peroxidase (LiP) activity was 185 U/l while manganese peroxidase (MnP) activity equaled 25 U/l. Effects of some selected operating variables were studied: manganese(II), veratryl alcohol (VA), glucose as a carbon source and urea and ammonium nitrate, each as a source of nitrogen. Results showed that the colour reduction and LiP activity were highest (76% and 186 U/l, respectively) either when no Mn(II) was added or added at the lowest level tested (0.16 mg/l to provide 0.3 mg/l). Activity of MnP was highest (25 U/l) when Mn(II) added to the diluted MWW at the highest level (100 ppm) while activity of LiP was lowest (7.1 U/l) at this level of added Mn(II). The colour reduction in the presence of the added VA was shown to be little less than in its absence (70 vs. 75%). When urea as an organic source of nitrogen for the fungus, was added to the MWW, the decolorizing activity of P. chrysosporium decreased significantly (15 vs. 75%) and no activities were detected for LiP and MnP. Use of ammonium nitrate as an inorganic source of nitrogen did not show such a decelerating effects, although no improvements in the metabolic behavior of the fungus (i.e., LiP and MnP activities) deaccelerating was observed. Effects of addition of glucose was also discussed.  相似文献   

9.
Summary The effect of various carbon and nitrogen sources on laccase, manganese-dependent peroxidase (MnP), and peroxidase production by two strains of Pleurotus ostreatus was investigated. The maximal laccase yield of P. ostreatus 98 and P. ostreatus 108 varied depending upon the carbon source from 5 to 62 U l−1 and from 55 to 390 U l−1, respectively. The highest MnP and peroxidase activities were revealed in medium supplemented by xylan. Laccase, MnP, and peroxidase activities of mushrooms decreased with supplementation of defined medium by inorganic nitrogen sources. Peptone followed by casein hydrolysate appeared to be the best nitrogen sources for laccase accumulation by both fungi. However, their positive effects on enzyme accumulation were due to a higher biomass production. The secretion of MnP and peroxidase by P. ostreatus 108 was stimulated with supplementation of casein hydrolysate to the control medium since the specific MnP and peroxidase activities increased 15-fold and 3.5-fold, respectively.  相似文献   

10.
The autolysis of chlamydospore-like cells in Phanerochaete chrysosporium immobilized in polyurethane foam correlated with the production of manganese peroxidase (MnP). The maximum specific activity of MnP was 1055 U g dry mycelium–1 in the immobilized culture, compared with 260 U g dry mycelium–1 in the submerged culture. Scattered mycelial pellets were formed in the immobilized culture in which almost all of the chlamydospore-like cells were subject to autolysis. However, highly crowded pellets were formed in the free culture, in which only the chlamydospore-like cells in the exterior were subject to autolysis. We propose that the enhanced production of MnP in immobilized cultures of P. chrysosporium is due to increased autolysis of the chlamydospore-like cells.  相似文献   

11.
Outside and inside corn cob were used to study ligninolytic enzymes produced by Phanerochaete chrysosporium BKM-F-1767 (ATCC 24725) during solid state fermentation conditions. In a previous work by employing a mixture of outside and inside corn cob, we achieved a maximum MnP activity of 96?U l?1 but LiP activities were low. In the present work we determined which part of the corn cob is more suitable in order to obtain high ligninolytic activities. We could find MnP activities about 300?U l?1 by employing inside corn cob as a carrier and a maximum LiP activity of 24?U l?1. ?In a subsequent experiment, using inside corn cob as a carrier, we could considerably improve ligninolytic enzymes production, by supplementing the medium with Tween 80 (0.5% v/v). We obtained a maximum MnP activity of 384?U l?1and a maximum LiP activity of 155?U?l?1.  相似文献   

12.
Lignin and manganese peroxidase (LiP, MnP) and laccase production by Phanerocheate chrysosporium was optimized by response surface methodology for brewery waste and apple pomace. The effect of moisture, copper sulphate, and veratryl alcohol (VA) concentrations on enzyme production was studied. Moisture and VA had significant positive effect on MnP and LiP production and the viability of P. chrysosporium (p < 0.05) and copper sulphate produced a negative effect. However, moisture and copper sulphate had a significant positive (p < 0.05) effect on laccase production, but VA had an insignificant positive effect (p < 0.05). Higher values of MnP, LiP and viability of P. chrysosporium on apple pomace (1287.5 U MnP/gds (units/gram dry substrate), 305 U LiP/gds, and 10.38 Log 10 viability) and brewery waste (792 U MnP/gds and 9.83 Log 10 viability) were obtained with 80% moisture, 3 mmol/kg VA, and 0.5 mmol/kg copper. LiP production in brewery waste (7.87 U/gds) was maximal at 70% moisture, 2 mmol/kg VA, and 1 mmol/kg copper. Higher production of laccase in apple pomace (789 U/gds) and brewery waste (841 U/gds) were obtained with 80% moisture, 3 mmol/kg VA, and 1.5 mmol/kg copper. Thus, moisture along with VA and copper sulphate was pertinent for the production of ligninolytic enzymes and increased cell viability.  相似文献   

13.
 The effects of high manganese [180 μM Mn(II)] concentration and addition of malonate (10 mM) were studied in nitrogen-limited cultures of the white-rot fungus, Phlebia radiata. High levels of manganese alone showed no systematic influence on the production of lignin peroxidase (LiP), manganese peroxidase (MnP) or laccase. In contrast, high-manganese containing cultures of P. radiata showed lower efficiency in the mineralization of 14C-ring-labelled synthetic lignin ([14C]DHP). The highest rates of mineralization, up to 30% in 18 days, were reached in low- manganese(2 μM)-containing cultures when malonate was omitted. Degradation of [14C]DHP was substantially restricted by the addition of malonate. The combination of high manganese and malonate resulted in increased levels of MnP and laccase production, whereas LiP production was repressed. Also, the profiles of expression of the MnP and LiP isozymes were affected. A new P. radiata MnP isozyme of pI 3.6 (MnP3) was found in the high-manganese cultures. Addition of malonate alone caused some repression but also stimulating effects on distinctive MnP and LiP isozymes. The results indicate that manganese and malonate are individual regulators of MnP and LiP expression and have different roles in the degradation of lignin by P. radiata. Received: 30 August 1995/Received revision: 10 January 1996/Accepted: 12 February 1996  相似文献   

14.
Enzyme production and degradation of the herbicide bentazon by Phanerochaete chrysosporium growing on straw (solid substrate fermentation, SSF) and the effect of nitrogen and the hydraulic retention time (HRT) were studied using a small bioreactor and batch cultures. The best degradation of bentazon was obtained in the low nitrogen treatments, indicating participation of the ligninolytic system of the fungus. The treatments that degraded bentazon also had manganese peroxidase (MnP) activity, which seemed to be necessary for degradation. Pure MnP (with Mn(II) and H2O2) did not oxidize bentazon. However, in the presence of MnP, Mn(II) and Tween 80, bentazon was slowly oxidized in a H2O2-independent reaction. Bentazon was a substrate of pure lignin peroxidase (LiP) and was oxidized significantly faster (22,000–29,000 times) as compared to the MnP-Tween 80 system. Although LiP was a better enzyme for bentazon oxidation in vitro, its role in the SSF systems remains unclear since it was detected only in treatments with high nitrogen and high HRT where no degradation of bentazon occurred. Inhibition of LiP activity may be due to phenols and extractives present in the straw.  相似文献   

15.
Rhizopus nigricans, isolated from an industrial effluent (paper mill), was resistant to pentachlorophenol (PCP) in Petri dishes and in submerged cultures (100 and 25 mg l–1 respectively). It was shown that this strain of R. nigricans can remove PCP in submerged culture. When 12.5 mg of PCPl–1 were added at 48 h, this compound had been completely removed by 144h. Results indicated that the fungus did not produce extracellular lignin peroxidase (LiP) and laccase, but extracellular phenoloxidase production was observed. The synthesis of the latter enzyme was stimulated by the presence of PCP and/or tyrosine. These results indicate that this fungus, and probably other filamentous fungi, have an interesting potential to be used in processes for chlorophenol biodegradation.  相似文献   

16.
17.
Lignin peroxidase (LiP) plays an active role in the biodegradation of lignin and phenolic structures resembling lignin. The role of other enzymes in the biodegradation of recalcitrant compounds, e.g. manganese(II)-peroxidase, is uncertain. Solid manganese(IV)oxide addition improved the production of manganese(II)-dependant peroxidase (MnP) and H2O2 and increased the rate of biodegradation of Aroclor 1254 in a nitrogen-limited medium by the white rot fungus Coriolus versicolor. MnP activity was detected 48 h after the addition of MnO2 to the cultures and was absent in cultures that did not receive MnO2. The rate of Aroclor 1254 removal by C. versicolor was influenced by the concentration of MnO2. 34.5 mM concentrations only increased the H2O2 production. Removal of Aroclor 1254 in the absence of MnO2 still took place which implied the presence of (LiP) or nonspecific absorption. The cultures containing 57.5 mM MnO2 removed ca. 84% of the initial 750 mg l−1 Aroclor in 6 days of incubation. Cultures with no MnO2 and 34.5 mM removed 79 and 76%, respectively. Cultures with MnP or LiP as the dominant enzyme species removed penta- and hexachlorobiphenyls at a slower rate than tri- and tetrachlorobiphenyl.  相似文献   

18.
Summary The production of the ligninolytic enzymes by Phanerochaete chrysosporium immobilized on polyurethane foam cubes in air was investigated by adopting different sizes and amounts of the carriers, different medium C/N ratios and different glucose-feeding strategies. No lignin peroxidase (LiP) activity was observed under nitrogen limitation (C/N ratio, expressed as glucose/NH4+, 56/2.2 mM) with two sizes and three amounts of the carriers, while comparable levels of manganese peroxidase (MnP) activities were detected only in non-immersed cultures with two sizes of the carriers. A non-immersed state also stimulated LiP formation under carbon limitation (C/N ratio 28/44 mM). High peak activities of LiP, 197 and 164 U/l, were obtained in non-immersed cultures under carbon limitation at the C/N ratios of 28/44 and 56/44 mM, respectively, the occurrence of the activities coinciding with the complete consumption of glucose. A very low level of MnP was measured at the C/N ratio of 28/44 mM compared with the similar activities at 56/2.2 and 56/44 mM. An addition of 2 g glucose/l after its complete depletion improved both the production of LiP and MnP markedly in non-immersed culture at the initial C/N ratio of 28/44 mM, whereas a replenishment of 5 g/l, still enhancing the formation of MnP, inhibited the production of LiP first before the later reactivation. It is suggested that non-immersed liquid culture under carbon limitation reinforced by a suitable glucose feeding strategy is one potential way to realize high production of the ligninolytic enzymes by P. chrysosporium in air.  相似文献   

19.
Bisphenol A was efficiently removed by the polymerization and precipitation method using Coprinus cinereus peroxidase. The removal efficiency was optimal between pH 9–10 and at 40 °C with a molar ratio of H2O2 to bisphenol A of about 2. To remove 100 mg bisphenol A l–1, peroxidase was required 5 U ml–1 at pH 7 and 25 °C and 3 U ml–1 at pH 10 and 40 °C.  相似文献   

20.
Brevibacterium linens forms hydrolytic enzymes which can be used to accelerate the ripening of cheese without causing bitterness. B. linens ATCC 9172 was grown to a high cell density (50 g dry wt l–1 after 60 h) in a mineral medium containing lactic acid, soy-peptone and ammonium sulphate by applying a continuous feed of nutrients. The maximal activities of l-leucine aminopeptidase and cell-associated proteinase were 286 U l–1 and 202 U l–1, respectively. The cell-associated lipolytic activity exhibited a strong and sudden increase at 46 h, resulting in a maximum of 9.5 U g–1 dry wt; thus the volumetric productivity of proteolytic and lipolytic activity was 4220 U l–1 h–1 and 7.3 U l–1 h–1, respectively.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号