首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 8 毫秒
1.
2.
Angiotensin II (Ang II) type 2 receptors (AT2Rs) have been associated with apoptosis. We hypothesized that AT2Rs are increased in stroke and may contribute effects of stroke to the brain. To test this, we have examined the expression of Ang II type 1 receptor (AT1R), AT2R and Ang II levels in the brain 24 h after transient middle cerebral artery occlusion (MCAO). The densities of AT1R and AT2R were measured by quantitative autoradiography (n=6). The levels of Ang II were measured by radioimmunoassay (RIA) (n=6) and by immunohistochemistry (n=3). AT1R levels on autoradiography showed a significant decrease (0.87±0.06 to 1.39±0.07 fmol/mg, p<0.01) in the ventral cortex of the stroke side compared to the cortices of non-stroke (NS) rats (n=4). There was no significant difference on ATIR in the contralateral verbal cortex of the stroke rats compared to NS control. In contrast, levels of AT2R in the ventral cortex of both the stroke and the contralateral sides were significantly increased (0.77±0.06, p<0.05 and 0.91±0.05, p<0.01 compared to 0.60±0.03 fmol/mg tissue, respectively). RIA showed that Ang II in the ventral cortex of both the stroke and the contralateral sides were significantly increased (241.63±47.72, p<0.01 and 165.51±42.59, p<0.05 compared to 76.80±4.10 pg/g tissue, respectively). Also, Ang II in the hypothalamus was significantly increased (179.50±17.49 to 118.50±6.65 pg/g tissue, p<0.05). Immunohistochemistry confirmed the increase of Ang II. These results demonstrate that brain Ang II and AT2Rs are increased whereas AT1Rs are decreased after transient MCAO in rats. We conclude that in stroke, Ang II and AT2R are activated and may contribute neural effects to brain ischemia.  相似文献   

3.
Excitatory amino acid release and neurotoxicity in the ischemic brain may be reduced by endogenously released adenosine which can modulate both glutamate or aspartate release and depress neuronal excitability. The present study reports on the patterns of release of glutamate and aspartate; the inhibitory amino acids GABA and glycine; and of the purine catabolites adenosine and inosine from the rat parietal cerebral cortex during 20 and 60 min periods of middle cerebral artery (MCA) occlusion followed by reperfusion. Aspartate and glutamate efflux into cortical superfusates rose steadily during the period of ischemia and tended to increase even further during the subsequent 40 min of reperfusion. GABA release rose during ischemia and declined during reperfusion, whereas glycine efflux was relatively unchanged during both ischemia and reperfusion. Adenosine levels in cortical superfusates rose rapidly at the onset of ischemia and then declined even though MCA occlusion was continued. Recovery to pre-occulusion levels was rapid following reperfusion. Inosine efflux also increased rapidly, but its decline during reperfusion was slower than that of adenosine.  相似文献   

4.
In vivo temporal electron paramagnetic resonance (EPR) imaging of the blood-brain barrier-permeable nitroxide radical, 3-methoxycarbonyl-2,2,5,5-tetramethylpyrrolidin-1-yloxy (PCAM), in the brain of rats was conducted following acute administration of risperidone (RSP) or haloperidol (HPD). The half-life of the signal intensity of PCAM was obtained from a selected area in the temporal EPR images. The half-lives in the striatum and cerebral cortex for the RSP- or HPD-treated rats were significantly longer than for the control rats (p < 0.01). This finding indicates that the reducing abilities of the striatum and cerebral cortex decreased in the rats to which either RSP or HPD had been acutely administrated because the half-life of PCAM in the selected region of the brain reflects its reducing ability.  相似文献   

5.
6.
Tamoxifen (TAM), a widely used non-steroidal anti-estrogen, has recently been shown to be neuroprotective in a rat model of reversible middle cerebral artery occlusion (rMCAo). Tamoxifen has several potential mechanisms of action including inhibition of the release of excitatory amino acids (EAA) and nitric oxide synthase (NOS) activity. The question addressed in this study was whether TAM reduces ischemia-induced production of nitrotyrosine, considered as a footprint of the product of nitric oxide and superoxide, peroxynitrite. In rat brain, 2 h rMCAo produced a time-dependent increase in nitrotyrosine content in the cerebral cortex, as measured by Western blot analysis. Compared with vehicle, TAM significantly reduced nitrotyrosine levels in the ischemic cortex at 24 h. The neuronal (n)NOS inhibitor, 7-nitroindazole also tended to reduce nitrotyrosine, but this reduction was not statistically significant. Immunostaining for nitrotyrosine was seen in cortical neurons in the MCA territory and this immunostaining was reduced by TAM. In vitro, TAM and the calmodulin inhibitor trifluoperazine inhibited, with similar EC(50) values, the activity of recombinant nNOS as well as NOS activity in brain homogenates, measured by conversion of [(3)H]arginine to [(3)H]citrulline. There was marginal inhibition of recombinant inducible (i)NOS activity up to 100 microM TAM. These data suggest that TAM is an effective inhibitor of Ca(2+)/calmodulin-dependent NOS and the derived peroxynitrite production in transient focal cerebral ischemia and this may be one mechanism for its neuroprotective effect following rMCAo.  相似文献   

7.
Carbamoylphosphate has been shown to be the educt for the synthesis of the CN ligands of the NiFe metal centre of hydrogenases from Escherichia coli. In the absence of carbamoylphosphate, cells accumulate a complex of two hydrogenase maturation proteins, namely HypC and HypD for the synthesis of hydrogenase 3. A procedure for the purification of wild-type HypD protein or of a biologically active derivative carrying the Strep-tagII((R)) at the N terminus has been developed. HypD is a monomeric protein possessing about 4 mol of iron per mol of protein. Electron paramagnetic resonance (EPR) and Mossbauer spectroscopy demonstrated that the iron is present as a diamagnetic [4Fe-4S](2+) cluster. The complex between HypC and HypD can be cross-linked by a number of thiol and primary amine-specific linkers. When HypD and HypC were overproduced side-by-side with HypE, the HypC-HypD complex contained substoichiometric amounts of HypE whose proportion in the complex could be augmented when HypF was also overproduced. HypE trapped in this complex could be carbamoylated by protein HypF and after dehydration transferred the cyano group to the HypC-HypD part of the complex. Free HypC and HypD were not cyanated by HypE-CN. An active HypC-HypD complex from anaerobic cells was inactivated by incubation with K(3)[Fe(CN)(6)] but not with K(4)[Fe(CN)(6)]. The results suggest the existence of a dynamic complex between the hydrogenase maturation proteins HypD, HypC, HypE and HypF, which is the site of ligand biosynthesis and attachment to the iron atom of the NiFe site in hydrogenase 3.  相似文献   

8.
Restoration of blood flow to an ischemic brain region is associated with generation of reactive oxygen species (ROS) with consequent reperfusion injury. ROS cause lipid peroxidation, protein oxidation, and DNA damage, all of which are deleterious to cells. So diminishing the production of free radicals and scavenging them may be a successful therapeutic strategy for the protection of brain tissue in cerebral stroke. The present study investigated the neuroprotective effect of sesamin (Sn) to reduce brain injury after middle cerebral artery occlusion (MCAO). The middle cerebral artery (MCA) of adult male Wistar rat was occluded for 2 h and reperfused for 22 h. Sesamin is the most abundant lignan in sesame seed oil is a potent antioxidant. Sesamin (30 mg/kg) was given orally twice, 30 min before the onset of ischemia and 12 h after reperfusion. The initial investigations revealed that sesamin reduced the neurological deficits in terms of behavior and reduced the level of thiobarbituric acid reactive species (TBARS), and protein carbonyl (PC) in the different areas of the brain when compared with the MCAO group. A significantly depleted level of glutathione and its dependent enzymes (glutathione peroxidase [GPx] and glutathione reductase [GR]) in MCAO group were protected significantly in MCAO group treated with sesamin. The present study suggests that sesamin may be able to attenuate the ischemic cell death and plays a crucial role as a neuroprotectant in regulating levels of reactive oxygen species in the rat brain. Thus, sesamin may be a potential compound in stroke therapy.  相似文献   

9.
10.
《朊病毒》2013,7(5):376-393
ABSTRACT

Biochemical similarities have been noted between the natively unstructured region of the cellular prion protein, PrPC, and a GPI-linked glycoprotein called Shadoo (Sho); these proteins are encoded by the Prnp and Sprn genes, respectively. Both proteins are expressed in the adult central nervous system and they share overlapping partners, including each other, in interactome studies. As prior studies have ascribed neuroprotective properties to the N-terminal region of PrPC, specifically the octarepeat region, we investigated Sho's neuroprotective properties. To this end we assessed Sho-null (Sprn0/0) and hemizygous (Sprn0/+) mice in the middle cerebral artery occlusion (MCAO) model versus wild type mice and also vs. transgene-rescued Sprn0/0-TgSprn mice. Sprn0/0 mice had a tendency to greater fragility in reaching endpoint and deficits in parameters including infarct volume and neurogenesis, with a reciprocal trend noted in transgene-rescued mice; however these effects did not reach significance. Loss of both PrPC and Sho immunostaining occurred in parallel to neuronal loss on the ipsilateral side of MCAO-lesioned animals; while focal elevations in immunostaining in the penumbra region were sometimes evident for PrPC, they were not noted for Sho. Our studies argue against discernible neuroprotective action of Sho in the genetic backgrounds used for this MCAO paradigm. Whether or not the positively charged N-terminal regions in Sho and PrPC fulfil different roles in vivo remains to be determined.  相似文献   

11.
目的:观察实验性大鼠脑损伤后不同时相点大脑皮层体感诱发电位(sensorysomaticevoked potentials,ssep)和局部血流量(regional cerebral blood flow,rCBF)的变化。方法:用流体冲击装置制作中度脑损伤模型SYD4200型神经诱发电位诊断系统监测皮层体感诱发电位,氢清除测定大脑局部血流量。结果:中度脑损伤后rCBF明显低于伤前和正常对照组;大脑皮层体感诱发电位的潜伏期明显延长。结论:SEP的变化与脑血流量有着一定的关系,一定程度上SEP的变化可反映脑损伤后血流量的变化。  相似文献   

12.
Xiao L  Wang YZ  Liu J  Luo XT  Ye Y  Zhu XZ 《Life sciences》2005,78(4):413-420
In the present study, the effects of paeoniflorin (PF), a characteristic monoterpene glucoside isolated from Paeoniae Radix, on cerebral infarction, neurological symptoms, tongue protrusion (TP) and performance in the water maze were examined at the chronic stage (4 weeks) of transient cerebral ischemia using a rat middle cerebral artery occlusion (MCAO) model. One-day (10 mg/kg, twice, s.c.) or seven-day (2.5-10 mg/kg, twice a day, s.c.) injection of PF significantly reduced the infarct volume as well as ameliorated the deficits in neurological symptoms caused by transient MCAO at chronic stage. Transient MCAO also induced impairments in TP and performance in the water maze. Treatment with PF was able to reverse or alleviate these impairments. These results indicate that PF may be effective for treatment of stroke.  相似文献   

13.
14.
15.
Alzheimer's disease (AD) and cerebral ischaemia share similar features in terms of altered amyloid precursor protein (APP) processing and β‐amyloid (Aβ) accumulation. We have previously shown that Aβ and calcium deposition, and β‐secretase activity, are robustly increased in the ipsilateral thalamus after transient middle cerebral artery occlusion (MCAO) in rats. Here, we investigated whether the non‐selective calcium channel blocker bepridil, which also inhibits β‐secretase cleavage of APP, affects thalamic accumulation of Aβ and calcium and in turn influences functional recovery in rats subjected to MCAO. A 27‐day bepridil treatment (50 mg/kg, p.o.) initiated 2 days after MCAO significantly decreased the levels of soluble Aβ40, Aβ42 and calcium in the ipsilateral thalamus, as compared with vehicle‐treated MCAO rats. Expression of seladin‐1/DHCR24 protein, which is a potential protective factor against neuronal damage, was decreased at both mRNA and protein levels in the ipsilateral thalamus of MCAO rats. Conversely, bepridil treatment restored seladin‐1/DHCR24 expression in the ipsilateral thalamus. Bepridil treatment did not significantly affect heme oxygenase‐1‐ or NAD(P)H quinone oxidoreductase‐1‐mediated oxidative stress or inflammatory responses in the ipsilateral thalamus of MCAO rats. Finally, bepridil treatment mitigated MCAO‐induced alterations in APP processing in the ipsilateral thalamus and improved contralateral forelimb use in MCAO rats. These findings suggest that bepridil is a plausible therapeutic candidate in AD or stroke owing to its multifunctional role in key cellular events that are relevant for the pathogenesis of these diseases.  相似文献   

16.
17.
18.

Background  

Animal models of focal cerebral ischemia are widely used in stroke research. The purpose of our study was to evaluate and compare the cerebral macro- and microvascular architecture of rats in two different models of permanent middle cerebral artery occlusion using an innovative quantitative micro- and nano-CT imaging technique.  相似文献   

19.
The aim of the present study was to assess the effect of post ictal administration of the pyrrolopyrimidine lipid peroxidation inhibitor, U-101033E, on infarct volume and neuronal and astrocytic metabolism in rats with transient middle cerebral artery occlusion (MCAO).

Rats were subjected to 120 min of MCAO followed by 140 min of reperfusion and randomly assigned to control (n = 17) or U-101033E treatment (n = 16). Drug infusion started 5 min after MCAO and lasted 220 min with a 15 min interruption during the reperfusion procedure. Sixteen rats underwent diffusion weighted imaging 260 min after ictus, from which the apparent diffusion coefficient (ADC) was determined. Seventeen rats received an iv bolus injection of [1-13C]glucose and [1,2-13C]acetate 245 min after ictus. Tissue extracts from two brain regions representing penumbra and ischemic core were analyzed with 13C NMRS and HPLC.

U-101033E did not affect the volume of ischemic tissue estimated from the ADC maps. In the penumbra, U-101033E specifically decreased mitochondrial pyruvate metabolism via both pyruvate dehydrogenase and pyruvate carboxylase pathways. Thus, U-101033E impaired both neuronal and astrocytic mitochondrial pyruvate metabolism. At the same time anaerobic glucose usage was increased, leading to increased lactate labeling and content. Also alanine labeling was increased. The data do not support lactate as an important substrate for neuronal mitochondria in ischemia–reperfusion. A similar pattern of reduced mitochondrial pyruvate metabolism and increased cytosolic pyruvate metabolism was found in the irreversibly damaged ischemic core. The present study highlights the importance of other outcome measures than ischemic tissue volume for evaluation of drug efficacy in animal models, which in turn could increase the likelihood of success in clinical trials.  相似文献   


20.
Three extrinsic proteins (PsbO, PsbP and PsbQ), with apparent molecular weights of 33, 23 and 17 kDa, bind to the lumenal side of Photosystem II (PS II) and stabilize the manganese, calcium and chloride cofactors of the oxygen evolving complex (OEC). The effect of these proteins on the structure of the tetramanganese cluster, especially their possible involvement in manganese ligation, is investigated in this study by measuring the reported histidine-manganese coupling [Tang et al. (1994) Proc Natl Acad Sci USA 91: 704–708] of PS II membranes depleted of none, two or three of these proteins using ESEEM (electron spin echo envelope modulation) spectroscopy. The results show that neither of the three proteins influence the histidine ligation of manganese. From this, the conserved histidine of the 23 kDa protein can be ruled out as a manganese ligand. Whereas the 33 and 17 kDa proteins lack conserved histidines, the existence of a 33 kDa protein-derived carboxylate ligand has been posited; our results show no evidence for a change of the manganese co-ordination upon removal of this protein. Studies of the pH-dependence of the histidine–manganese coupling show that the histidine ligation is present in PS II centers showing the S2 multiline EPR signal in the pH-range 4.2–9.5. This revised version was published online in June 2006 with corrections to the Cover Date.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号